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PREFACE TO THE SECOND EDITION

THE rapid advances made in the science of Physical Optics
since the appearance of the first edition of this book in 1905,
have made additions necessary in practically every chapter.
The numerous typographical errors which marred the first edition,
have been corrected, and certain sections of small interest or
importance have been removed bodily, to make more room for
new material. Even with these removals, the new edition will be
found increased in size by about 150 pages, and nearly 100
new illustrations. Three new chapters have been added, dealing
with the subjects of Meteorological Optics, Electro-Optics, and
the Principle of Relativity. The numerous additions and en-
largements deal almost exclusively with the experimental side of
the subject, and the larger part of the matter removed is mathe-
matical, the loss of which, it is believed, will not be felt. I am
under great obligation to Professor Frost, who furnished a large
number of illustrations which have appeared in the Astrophysical
Journal, and to Mr. Francis, of the Philosophical Magazine, for
the same courtesy. I am also under obligation to Professor
Zeeman for his kindness in reading the proof of the chapter on
Magneto-Optics, and supplying me with some of his most recent
results which otherwise could not have been included.

R. W. WOOD.
GeENEvVA, February, 1911.
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PREFACE TO FIRST EDITION

THE present volume was commenced at a time when Preston’s
Theory of Light was practically the only advanced textbook on
the subject in English suitable for general class work. This work,
while excellent in every respect, could scarcely be said to repre-
sent our present knowledge of the subject. Anomalous dispersion
and the relation existing between absorption and dispersion was
barely mentioned, and of course the recent remarkable discoveries
in the field of magneto-optics were not recorded. In the mean-
time, two very excellent books have appeared, the English trans-
lation of Drude’s Lekhrbuch der Optik, which cannot be surpassed,
and Schuster’s Theory of Optics, which, while extremely interesting
and suggestive, omits all mention of the Laws of Radiation,
Fluorescence, and Phosphorescence, and the whole subject of the
‘‘ Optics of moving media.”

In the present volume especial stress has been laid on the ex-
perimental side, and it is the author’s hope that the perhaps too
frequent references to experiments with which he has been more
or less directly associated will not be taken as an indication of
a lack of perspective.

No pretence at originality in the mathematical treatment is
made: the work has been compiled to a great extent from lecture
notes, and many plagiarisms doubtless occur. The excellent
theoretical treatment, based upon the electro-magnetic theory
given by Drude, has been followed very closely, and it is hoped
that this acknowledgment may serve in place of the numerous
quotation marks which would otherwise be necessary. Various
other standard textbooks have been drawn upon freely, especially
the very comprehensive work of Verdet.

Too much space has perhaps been given to the theory of dis-
persion, and the incorporation of the somewhat lengthy develop-
ment of the dispersion formula by elementary methods, based -
upon the elastic-solid theory, may appear superfluous. The
advantage of this treatment lies in the fact that it does not
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viii PREFACE TO FIRST EDITION

involve the use of imaginary quantities, which are always a little
troublesome to the student at first; in addition to this, it appears
to be a little more intelligible, the reciprocal actions between the
vibrating atom and the ether being more readily grasped by the
mind than the somewhat vaguer conception of displacement
currents in the ether and their action upon charged electrons.
The electro-magnetic treatment follows.

The illustration of the book has been greatly facilitated through
the courtesy of Mr. William Francis, who has furnished blocks
of many plates and figures from the Philosophical Magazine.

I am under very great obligation to my friend, Professor J. S.
Ames, who has made many valuable suggestions from time to
time, cleared up many doubtful points, and read the manuscript

during the process of its preparation.

R. W. WOOD.
BALTIMORE, May 2nd, 1905.
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CHAPTER 1

THE NATURE OF LIGHT

Older Theories.— The foundations of our present knowledge re-
specting the nature of light were laid during the latter part of the
17th century, although the modern wave-theory did not take definite
form until over a century later. The important discoveries which
may be said to mark the beginning of the science of optics may
be summed up in a few words.

In 1666 Sir Isaac Newton effected the prismatic decomposition
of white light into its component colors, and proved that no further
color cha.nge resulted from subsequent refractions. He moreover
recombined the spectrum colors, and formed from them white light.
This was a great step in advance in one way, for it had been thought
previously that color was produced by refraction, manufactured by
the prism so to speak, whereas Newton showed that the colors
were originally present in the white light, the function of the prism
being merely to separate them or sort them out, whichit accomplished
in virtue of its power of deviating rays of different colors through
different angles. Curiously enough this discovery, which we are
taking as marking the beginning of our definite knowledge about
light, is one which we shall demolish in the last chapter of thxs book,
for our present idea regarding the action of the prism more nearly
resembles the idea held previous to Newton’s classical experiments:
we now believe that the prism actually manufactures the colored
light, and what is more to the point, we have a pretty definite idea
regarding the manner in which it manufactures it, in which respect
we may consider ourselves in advance of Newton’s contemporaries.

The importance of Newton'’s discovery is not to be underestimated
on this account, and his conception of the nature of white light will
be held to throughout the greater part of this book, for it represents
perfectly all of the experimental facts with which we are acquainted,
and the treatments of nearly all of the optical phenomena which we
are to study are greatly simplified by its use.

Newton elaborated what is known as the corpuscular theory of
light, and clung to it tenaciously to the last, the weight of his
opinion retarding in no small degree the development of the wave-
theory, which was first clearly expressed in 1678. On the corpus-
cular theory light was regarded as a flight of material particles

B 1
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emitted by the source, the sensation of sight being produced by
their mechanical action upon the retina. The rectilinear propagation
followed at once from the second law of motion, whereas the early
supporters of the wave-theory were unable to account for it, as
every known form of wave motion bent freely around the edges
of obstacles.

In 1676 it was demonstrated by Romer, a Danish astronomer, that
light required a finite time for its propagation, travelling across space
with a velocity which he estimated at 192,000 miles per second. Now
the impact of corpuscles moving at such a speed might well be ex-
pected to exert a pressure, and attempts were at once made to estab-
lish the materiality of light by detecting this pressure, all of which
were failures however. At the present time we know that light does
exert a pressure, though a very small one, but this pressure can be
shown to be the necessary consequence of the impact of waves, so
that it is as strong evidence of the truth of the wave-theory, as it
would have been of the emission-theory had it been discovered in the
days of Newton.

A wave-theory of light was first expressed in definite form by
Huygens in 1678, and twelve years later he satisfactorily explained
reflection, refraction, and the phenomenon of double refraction in
uniaxal crystals, which was discovered by Bartholinus in 1670.
Although he discovered the phenomenon of polarization, which would
have practically been the death-blow to the emission-theory, had its
nature been understood, he was wholly unable to account forit. We
must remember, however, that he had longitudinal waves in mind, ..
waves in which the direction of the vibration was parallel to the
direction of propagation, and polarization would be as difficult to
account for by such a theory as by the corpuscular one. He was
moreover unable to offer any satisfactory explanation of the recti-
linear propagation of light, or the formation of shadows, and his

. theory fell into disrepute.

b

— . ——

Strangely enough Newton himself made the discovery which, if
handled in the proper manner, would have established almost beyond
a doubt the validity of the wave-theory.

He devised a method for studying the dependence of the colors

"of thin films, first observed by Boyle and Hooke, upon the thickness

of the film. These colors, however, he sought to explain on the
emission hypothesis. Grimaldi in 1665 was e ngaged with the study
of diffraction, or the bending of light around the ed of obstacles.
Admitting sunlight through two small apertures mto a darkened
room, he observed what he thought to be a darker region at the
point 'where the two diverging beams overlapped. As he was merely
looking for evidence of the non-matenahty of light, he regarded hls
experiment as conclusive and pursued the subject no further. The
apparent destructive interference of light, whlch Grimaldi thought
that he had observed, was without doubt an effect due to contrast.
True interference was first observed by Dr. Young at the

of the 19th century nearly 150 years later, whose justly celebrated
experiments established almost beyond questlon the validity of the
wave-theory.
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Young, however, at first regarded the waves as longitudinal, which
assumption, though erroneous, did not affect the validity of his
reasoning concerning the formation of interference fringes and the
colors of thin plates. Fresnel commenced his optical studles in 1814
and introduced, for the first time, the conception of transverse waves,
a conception which he found necessary for an explanation of polariza-
tion. Rectilinear propagation he accounted for by a most ingenious
method of dividing the wave front up into zones, often wrongly
attributed to Huygens, and showing that the disturbances coming
from the collective zones, produced zero illumination within the
shadow according to the well-known principles of interference. This
was a very bold hypothesis, for it necessitated an ether having the
properties of an elastic solid, a condition difficult to reconcile with
the free and unobstructed motion of the planets through it. This
‘ elastic solid”’ theory, however, came to be generally accepted, and
can still be used to advantage in treating many optical phenomena,
for it 18 more easily intelligible than the modern electro-magnetic
theory. Light, on this theory, is regarded as a transverse displace-
ment of a medium called ether, having properties similar to those of
an elastic solid, the displacement being propagated from point to
point, according to the well-known laws which govern wave otion.
There are many objections, one of which is the difficulty regarding
the longitudinal disturbance, which always accompanies the trans-
verse one, in the case of a solid. No existence of any such longitu-
dinal disturbance in the ether has ever been found.

Various hypotheses have been made to get around the difficulty.
The phenomena of light cannot well be reconciled with the presence
of any longitudinal disturbance which is propagated with finite
velocity. It has been gotten rid of in the theory by considering the
ether as incompressible, which gives to the longitudinal disturbance
an infinite velocity. Lord Kelvin made a still bolder suggestion in
1888; he showed that if a “contractile-ether’’ be assumed, the
velocity of the longitudinal wave is infinitely small. In a solid if eis
the elasticity or resistance opposed to a shearing strain, k the resist-
ance to compression, and d the density, it can be shown that the

velocity of the transverse wave is :l" while that of the longitudinal

is "—’3-*-‘. In an incompressible fluid & would be infinitely large,
and we should have an infinite velocity for the longitudinal impulse.
‘To give us zero velocity for this disturbance, £k + § e must equal zero,
that is k must be negative, or there must be a negative resistance to
compression. This can only be true in a medium in which the con-
ditions are such that it would shrink if left to itself, and it is hard to
imagine a stable ether endowed with such properties. Lord Kelvin
gets over the difficulty by showing that the instability disappears if
we regard the ether as rigidly supported at its boundaries. The con-
dition may be illustrated by considering the case of a mass of small
soap bubbles, such as is formed by blowing into a soap solution. The
mass in this condition offers a resistance to compression in virtue of
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the enclosed air. Suppose we could spirit the air away: the mass
would then contract, owing to surface tension, until it vanished into
a small liquid drop. At the moment at which the air disappeared
it would offer a negative resistance to compression. If the mass of
bubbles were, however, blown within a hollow spherical vessel,
with a continuous surface, spiriting the air away would cause no
change, as the mass would be everywhere supported by the walls.

Lord Kelvin showed that on the assumption of an ether of this
nature, the relation between the intensities of the incident and
reflected light, in the case of transparent bodies, as expressed by
Fresnel’s tangent formula, could be accounted for, and Glazebrook
showed that it led as well to Fresnel’s wave surface in the case
of double refraction, both of which phenomena had not previously
been well explained on the electro-magnetic theory.

Lord Kelvin probably did not mean to imply that the ether really
was finite and supported by a rigid shell, though some have imagined
that the ether may stop somewhere. Such a condition of affairs
would prevent the escape of energy from the universe by radiation
to infinity, for the waves would be reflected back at the boundary.
Such speculations belong rather to metaphysics, and have no place
in the present volume.

The Electro-Magnetic Theory. — This theory assumes light to be
identical with the electro-magnetic disturbances, which are radiated
from bodies in which electrical oscillations are taking place. The
fundamental equations we owe to Maxwell, who predicted the exist-
ence of the waves which were discovered and studied by Hertz.
The periodic disturbances, which are supposed to constitute these
waves, were called displacement currents by Maxwell, and these
displacement currents can occur in the free ether or in a dielectric,
i.e. in & non-conductor of electricity. A medium, to be capable of
propagating vibrations, must possess two qualities. There must be
a force of restitution which pulls a displaced particle back into its
original position the moment it is released, and the medium must
in addition possess inertia, or something corresponding to it, other-
wise it would not swing past its position of equilibrium in opposition
to the elastic forces which oppose its motion. The electrical behavior
of the dielectric in a condenser furnishes abundant evidence of a force
closely related to elasticity, and the oscillatory discharge of a Leyden
jar points to the fact that electricity in motion has a tendency to
continue in motion. Maxwell’s theory does not tell us anything
about the nature of this electric displacement, so that in one sense
our ideas about the real nature of the luminous disturbances are
much vaguer than they were fifty years ago, when the elastic
solid theory was generally accepted, for in the motion of a solid we
are dealing with perfectly definite physical processes. As Schuster
remarks in the preface of his recent work on Optics, “ So long as
the character of the displacements which constitute the waves re-
mains undefined, we cannot pretend to have established a theory of
light.” The fundamental equations of the electro-magnetic theory
will be developed in the chapter on The Theory of Reflection and Re-
fraction, and we shall have occasion to make frequent use of them.
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Simple Periodic Motion. — If a particle moves along a straight
line in such a way that its distance y from a fixed point satisfies
the equation

y=asin (vl —a),

in which ¢ is the time and a and « are constants, its motion may
be defined as simple harmonic, or, as Schuster prefers to call it,
simple periodic motion. A particle which is acted upon by a force
which varies directly with its distance from a fixed point will, if
displaced and released, execute a motion represented by the above
equation, if no other forces, such as friction for example, come into
play. Forces of this nature are assumed to be called into play
by the displacements, mechanical or electrical, which constitute
light, and we will accordingly begin by establishing the above
equation and interpreting its meaning.
Let the force corresponding to displacement y be

y=—py,

in which p is a constant, viz. the force corresponding to unit dis-
placement; the minus sign is given since the direction of the force
is opposed to that of the displacement. If m is the mass of the
particle, we have for the acceleration,

—Py=— 1t1 =P- . '.‘-i_'-)=— .
- K’y (wrltlng K m)’ o Ky

Now v= % and we therefore have % = ‘g—g = — k*y, the integral

of which is y=asin (k{—«a).

This can also be shown in the following way.

The work done on a mass is measured by its kinetic energy and
is represented by the product of the force and the distance through
which it acts. Since the force varies in the present case, we have
for the work done on the particle, displaced a distance a, and
moved back by the force to position y,

- fpydy,

the minus sign being given because the path traversed is in the
negative direction of . .
g]uating this to the expression for kinetic energy gives us

l o2 e ’ =—-1:- ’ =E 2. ,
2mv’ j:pydy 2p£2ydy 2(a ¥);

.'.v’=£(a’—y’), v=+kVal—y3;

U ke, Ykt
e a , Vo y
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whence kt = =gin~ y

or y=a sin kt. (1)

Suppose the time to increase from ¢t=0 to kt= -, then y=a, the

2
maximum value which it can attain, or in other words the amplitude
of the vibration.

For kt=’-25, y=a, For kt==, y=0,

= 32', y=-—a, Forkt=2n= y=0,
the particle having performed one complete vibration.
If the time occup:ed is called T, we have kT =2, or

k=21r’ T=27r____2" _1_=2" 7_)_2.

—T— : 7 P P
m
Substituting for k in equation (1) gives us
y=adngzt
T

Wave-Motion. — In the above discussion we have investigated the
motion of a gingle particle. We will now consider what happens
when the particle is bound to other particles by forces which tend
to keep the particles at a fixed distance, such, for example, as an
attractive force and a repulsive force, the latter increasing more
rapidly than the former as the particles approach. Such a medium
would be capable of transmitting transverse waves, and we can
imagine a sort of atomic ether consisting of extremely minute par-
ticles bound together by forces as above specified. This conception
need not be taken as expressing our views regarding the constitu-
tion of the ether by any means, but as we shall make use of a medium
of this nature in the elementary deduction of the dispersion formula,
we may as well take it for our type of medium in the preliminary
study .of wave-motion.

Suppose our particles to be arranged in a row (Fig. 1) and held
at a fixed distance apart, say by a spiral spring in which they are

imbedded. If one of them is
-~ displaced, it is drawn back by
the vertical component of the
forces T and T due to the in-

4 r creased tension of the spring.

Z : Suppose the particles displaced
k4 as shown in Fig. 1, the radius

~—X of curvature at A being B. The

Fia. 1. force acting on A4 along y will be

2 T sin «, where « is the angle
gsubtended at the centre of curvature by the element ds of the
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medium, t.e. the distance between the two particles adjoining A;
2 T represents the sum of the tangential forces 7" and 7", which are
assumed equal for small values of a.

We have then F=2Tsinae=7T - 2a=;—;ds (since 2a=4§).

R
Now the curvature % =— 3—3 for small displacements, and if p is

the density per unit length, pds is the mass, and we have

@y_ _p_r?Y dy_Tdy,
pdege = F =T %% 3= L ap
This equation has for its solution

y=f<x-— \/-Tt) +f’(x+ \/zt);

or —f[t——l +f'lt+——

in which f and f’ are arbitrary functions.
In the case which we are considering, if the row of particles is
displaced as figured, and released, a wave-motion will spread out in

both directions, with a velocxty equal to \/ —=V.

If now the particle A vibrates in snmple periodic motion,

y=asin2w« % , we have one of our wave disturbances represented by

y=asin g%(t— %), or y=a sin 27r<%— f), since VT =A.

This equation represents as well a plane-wave travelling along the
z-axis; its amplitude is g, its periodic time 7, and its wave-length A.

We may get the form of the wave by giving to ¢ any fixed value,
for example ¢ = 0, when our equation becomes

. T
=qsSin2==-
Yy FA

We can plot the curve in the following way.
We will plot the ordinates (y) for values of z equal to multiples of

i_é (Fig. 2). Divide the circumference of a circle into 12 equal parts,
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and call the radius unity. For z=1= i%' the cos of « is the ordi-

nate of point 1 on the circumference of the circle. The same holds
for the other points, therefore we have only to draw lines parallel to z
through the points on the circle and mark their intersection with
ordinates erected at 1, 2, 3, etc. The points thus determined lie on
the wave.

Absence of Back-Wave. — If a point in a medium is made to vi-
brate in simple periodic motion, it sends out waves in both the posi-
tive and negative direction. Now when a wave meets a point in a
medium, the point is made to execute periodic motion, and the wave
beyond the point can be regarded as due to its motion. In this case,
however, the moving point only sends out a disturbance in one direc-
tion, though its motion is identical with that of the point sending out
waves in both directions. As we shall in the next chapter make use
of this conception of a point thrown into vibration by a wave as a
source of other waves, it is of some importance to distinguish be-
tween a secondary source of this nature and an actual source of light.

Let the curved line in Fig. 3 represent a wave travelling towards
the right. We know that this wave will be propagated with its type
unchanged, and that the medium behind it will come to rest the
moment the wave has passed. If, however, we distort the medium

into the shape figured, and then release it,

»— we shall have a wave travelling in both
directions. The difference between the
two cases will become at once apparent
if we consider the velocities as well as
the displacements of the particles. Con-
sider the first case, that of the moving
Fia. 3. wave : the particle at A is acted on by

a force drawing it downward, and being

at rest initially it moves in consequence. The particle at B is acted
upon in the opposite direction by an equal force. It, however, is
not at rest, for it is moving in a downward direction with a velocity
represented by the dotted arrow, for the wave has just passed by it,
and it is returning to its position of equilibrium : this velocity just
compensates the force due to the distortion of the medium and the
particle comes to rest. In the second case both A and B are at rest
initially, and both move the moment the restraint is removed, and
we have a wave moving in both directions. We can in the same way
see how the vibration of A by the passage of the wave through it
fails to give a back-wave. It moves let us say to A’, which it will do

in time -1—1 In the meantime the point C has returned to C’, and its

velocity just compensates the force due to the displacement of A,
which in a medium initially at rest would result in a back-wave.
Wave-Front. — We may define the wave-front as the continuous
locus of the points of the medium which are about to be disturbed.
Thus defined the wave-front marks the limit which the disturbance
has reached at the instant considered. A more general definition,
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however, and one which we shall find more useful is the following.
The wave-front is the continuous locus of points which are in the same
phase of nbration, or a surface of equal phase. If this surface is plane,
we speak of the waves as plane-waves, and since in isotropic media
the rays are perpendicular to the wave-front, the rays are in this
case parallel. The waves coming from sources of light situated at
infinity (e.g. the stars) are plane.

If the source is at a finite distance, the wave-fronts are spherical,
if the velocity of propagation-is mdependent of the direction, as
is the case in isotropic media. By means of mirrors or lenses it
is possible to transform a spherical wave-front into a plane one,
but we possess no means of starting a plane-wave directly. We
can perhaps get a better case of what this would involve in the
following way.

Consider a vibrating particle attached to an elastic string: waves
will run along the string and the wave-front will be a point (Fig. 4a).
Attach a number of strings to a rod vibrating in a direction parallel
to its length (Fig. 4b), and the wave-front will be a straight line if we
regard the strings as forming a continuous medium (Fig. 4b).

,—--

P

Fia. 4.

There is no such thing in nature as a linear wave of light, for
the reason that such waves can only occur in a medium of two
dimensions. The conception of such a wave is often made use of
in elementary treatments of diffraction, as the problems are much
simplified by restricting the disturbance to two dimensions.

If now our strings are attached to a vibrating plane, the continu-
ous locus of equal phase is obviously a plane, parallel to the moving
plane, since the waves all start at the same instant, and travel
with equal velocities. To realize this condition in optics it would
be necessary to arrange a plane source of light, over the surface of
which the vibration was uniform, i.e. the phases of all the vibrating
particles would have to be the same, a condition which obviously
cannot be realized. By attaching the strings to a vibrating point
and arranging them so that they stretch out in all directions, we
represent roughly the conditions under which we obtain a spherical
wave. It should be observed, however, that in the case of a to-and-
fro motion of the point, there are two directions in which transverse
waves will not be given out, these directions coinciding with the
direction of motion of the point. We have this circumstance occur-
ring in certain optical phenomena, as we shall see later on (certain
facts connected with the Zeeman effect, for example).
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Frequency and Wave-Length. — The length of the light wave de-
pends as we have seen upon two factors, the velocity and the fre-
quency or time of vibration. Since the velocity in refracting media
is usually less than the velocity in ether, the wave-length is reduced
when the disturbance enters such a medium, for the frequency re-
mains the same. The wave-length and frequency obviously depend
upon the nature of the source. Flames colored by metallic salts
may emit light of definite frequencies, such as the sodium flame, the
light of which consists chiefly of two yellow radiations, commonly
designated as the D lines.

Light in which we have but a single wave-length is said to he
monochromatic. It must be remembered, however, that strictly
monochromatic light involves an infinite train of waves, such as
would emanate from a particle the vibrations of which were subject
to no sudden or gradual changes of phase. Absolutely homogeneous
or monochromatic light is something that has no actual existence,
though we are accustomed to speak of light which the spectroscope
shows as a single narrow line, as monochromatic.

The color depends upon the wave-length, but the color cannot
always be taken as an indication of wave-length, as certain colors can
be imitated by the simultaneous action upon the retina of two trains
of waves, either of which acting alone would give rise to a totally
different color from that perceived when both act together.

For example, a yellow scarcely distinguishable from the yellow
of the sodium flame can be produced by a mixture of red and green
light in the proper proportions. A screen can be easily prepared
which transmits red and green only and in about the right propor-
tions to produce the sensation of ““ subjective yellow,” as it is called.

Canada balsam, boiled down until it will solidify on cooling, is
stained with * brilliant-green ’’ and naphthalene yellow, in the same
proportions used for making dichromatism prisms (see page 351)
and a small quantity pressed out between two warm glass plates
until the color of the transmitted light is yellow. Examination with
a small spectroscope reveals the fact that in reality no yellow light is
transmitted, only red and green. We have then the important
distinction that while wave-length determines color, color does not
necessarily determine wave-length.

Lord Rayvleigh recommends a mixture of an alkaline solution of
litmus with chromate of potash. If a window, hacked by well-
lighted clouds, is viewed through such a solution and a prism it pre-
sents a most splendid appearance, for the red and green images are
widely separated, the region where they overlap being colored with
the compound yellow. A screen capable of transmitting only the
ycllow region is difficult to prepare. A mixture of bichromate and
permanganate of potash answers fairly well, and can be made to
match the color of the first screen. A sodium flame is invisible
through the first and easily visible through the second. Both to-
gether are practically opaque even with very intense white light.

The different radiations present in a source may be separated by
a prism or diffraction grating, as we shall see, and we obtain in this
way what is known as a spectrum of the source : not all of the radia-~
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tions in the spectrum affect the eye, for, as we know by experiment,
there are regions beyond the red and violet which we cannot see.
The longer waves in the infra-red spectrum can be recognized by
their heating power, or by their action on phosphorescent sub-
stances; the ultra-violet or short waves can be detected by photog-
raphy or by their action in causing fluorescence.

The length of the light wave can be measured with great precision
by methods which will be described later on.: The shortest ultra-
violet light waves were discovered by Schumann and were subse-

quently curately measured by Lyman : thgmy
air that they . 1%12&149‘{01' In an
afmosphere of hydrogen. The longest infra- waves, found in

1910 by Rubens and Hollnagel, have a length of {{ of a millimeter
or are one thousand times as long as the Schumann ultra-violet
waves. The wave-lengths in the different parts of the spectrum are
given in the following table :

Wave-LznoTr

Schumannwaves . . . . . . . . . . 00010 mm. /v

-vi ' .00020 mm.
Ultra-violet . . . . . . . . . . . . { — ‘200t 3
Extremeviolet . . . . . . . . . . . 00040 mm. ) g7
Blue . . . . . . . . .. . 0 .. .00045 mm.
Green . . . . . . . . . . . ... 00050 mm. _;zr)
Yellow . . . . . . . . . . . .. 00058 mm.
Extremered . . . . . . . . . . . .00072 mm.
Infra-red 1» . . . 001 mm.
Residual rays reflected from quartz 8.5 p. . .0085 mm.
Residual rays from sylvite, 60 » . . 0600 mm.
Residual rays from iodide of potassmm, 96 p.

or nearly Yy mm. . . 096 mm.
Shortest electro-magnetlc waves . . . . . 6.0 mms.

The  residual rays ”’ are obtained by reflecting the radiations of
a Welsbach lamp from a number of surfaces of quartz or other
material. To get a comparative idea of these wave-lengths we may
take a metre stick as our scale. Calling the Schumann waves 1 mm.,
green light will be 5 mms., red light 7 mms., and the longest heat
waves thus far found 96 cms., or practically the entire meter. Now
consider this scale reduced in length to {; of a millimeter, and we
have our waves as they actually are.

Sources of Light for Experimental Purposes. — It will perhaps be
well in the introductory chapter to describe briefly a number of
sources of light, which will be found useful in experimental work
pertaining to the subject of Physical Optics. As a source of white
light, the sun is to be preferred when great intensity is required.
Next to this comes the electric arc, the type most suitable for
experimental work being a lamp in which the positive carbon is
horizontal. If great intensity is not necessary, the Nernst filament
will be found very serviceable. It ranks next to the arc in intrinsic
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intensity, requires no attention, and has the added advantage of
narrowness. It may thus be used in many cases as a substitute for
an illuminated slit. If an electric current is not available, a
Welsbach lamp, surrounded by a sheet-iron chimney furnished
with a small vertical slit, will be found an excellent substitute.

If a source of light giving a continuous spectrum in the ultra-
violet is required, as in the study of absorption spectra in this region,
nothing is superior to-the cadmium spark, which in addition to its
bright lines has a fairly strong continuous background. An induc-
tion coil, or better still a 10,000-volt transformer, with one or two
large Leyden jars in the circuit, furnishes the best means of obtaining
a suitable spark. An acetylene flame, traversed by the discharge
of the high potential transformer, gives a continuous spectrum free
from bright lines, which extends down into the ultra-violet region
much farther than most sources of light, and can be used in cases
where the bright lines of the cadmium spectrum are undesirable.
The spark under water is another source of an ultra-violet spectrum,
but its use is troublesome. The modern incandescent lamps, with
filaments of tungsten, have an intensity even greater than that of
the Nernst lamp, and it is probable that a lamp made with a tung-
sten filament half a millimeter broad and one centimeter in length
would be extremely useful for experimental work.

As sources of monochromatic light we possess various colored
flames and vacuum-tubes, from the spectrum of which we can pick
out a monochromatic radiation by
screening off the wave-lengths
which are not desired. A simple
form of apparatus for accomplish-
ing this is described in Mann’s
Manual of Optics. 1t is easily con-
structed, not expensive, and can
be made without the services of a
skilled mechanician (Fig. 5). Light
from a slit S, made parallel by a lens L, traverses a glass prism,
after which it is reflected back through the prism and collimating
lens, the convergent beam being then deviated to one side by a
small right-angled prism, the focussed spectrum falling upon a
screen provided with a vertical slit §’. By turning the mirror M
by means of adjusting screws, any desired portion of the spectrum
may be passed out through the side slit. It is possible with this
instrument to obtain fairly monochromatic light from a source
giving a continuous spectrum, or to pick out the highly homo-
geneous radiations which are emitted by metallic vapors, brought
to a state of luminescence by the electrical discharge in vacuum
tubes, or in the arc or spark discharge.

An instrument is made by R. Fuess, of Steglitz, near Berlin, which
is a combined spectroscope and monochromatic illuminator. The
author has found this instrument most useful. It is very easily
calibrated, and will furnish a beam of approximately monochromatic
light from sun or arc light, the width of the band being not much
wider than the distance between the sodium lines. The transmitting
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slit can be removed in an instant, and the insertion of the eye-piece
in its place transforms the instrument into a very good spectroscope.

The sodium flame is the most generally used source of mono-
chromatic light. Its radiations, however, consist of two wave-
lengths, consequently its spectrum consists of two lines in the yellow
very close together. To separate one of these from the other is a
matter of considerable difficulty, and for most purposes the complete
radiation will be found equally satisfactory. The most satisfactory
flame can be obtained by winding a piece of asbestos paper around
the top of a Bunsen burner (fastening it with wire) and saturating
it with strong brine.

Monochromatic red light can be ohtained by saturating an asbes-
tos cylinder with a solution of chloride of lithium, and a satisfactory
green by means of a small fragment of metallic thallium, fused to a
loop of platinum wire. The bead should be mounted so as to barely
touch the outer edge of the flame, otherwise it will rapidly evaporate.
For long-continued work, however, the most satisfactory light is
the mercury arc, from the radiation of which we can pick out by
means of color screens, or the simple spectroscope described above,
any one of the numerous bright lines.

A commercial mercury arc is the easiest to operate, and gives no
trouble. It will be found immensely useful and should be installed
in every laboratory. Its light is not as intense as that emitted by
the lamps made of fused quartz by Heraeus of Hanau, Germany,
and it does not give us much of the ultra-violet, but for most pur-

it 18 most satisfactory.

A very simple and easily constructed mercury lamp has been
described by A. H. Pfund. It consists of a piece of glass tubing
7 cms. in length and 1.2 cms. in diameter sealed to a larger tube
3 cms. in diameter and 18 cms. long, provided with a side tube for
exhaustion. A platinum wire is sealed into the lower end of the
small tube, which is half filled with mercury. The mercury forms
the negative electrode, while a hollow sheet-iron ring forms the posi-
tive (Fig. 6). This electrode is made by cutting out a piece of
sheet iron as shown in the smaller figure (a) and bending it into the
form of a double ring (b).

The lower ring should be a little smaller than the upper, so as not
to come into contact with the glass when the upper, or supporting,
ring is pushed into the small tube. The ring is heated to a high tem-
perature when the current passes, and invariably cracks the glass
if it touches it. A thin iron wire is fastened to the ring and passes
out through the top, through a sealing wax seal. It is better to
use copper wire at the point where it passes through the wax, as
the current heats the iron. The joint is made at C. The top is
closed by a quartz plate sealed on with wax.

A properly made joint made with sealing wax will hold a cathode
ray vacuum for days. The end of the tube should be warmed and
the wax applied until a thick ring is formed. The plate should
then be heated and pressed against the wax ring, after which the
joint should be gone over with a small pointed gas flame, burning
at the tip of a ‘“ drawn-down " glass tube. The lamp is exhausted
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- with a mercury pump, and joined to a 110-volt direct current cir-
cuit, with a resistance of about 30 ohms in series with it. It is
started by warming the bottom with a Bunsen burner and tilting
or shaking it until the circuit is made. It should be run for fifteen
minutes while connected with the pump, to get rid of the occluded
gases, after which it can be sealed off. If the light in the visible

spectrum alone is re-

= quired, it may be taken
7 I’ from the side. The ul-
tra-violet radiations
come out through the

( quartz plate. If only
l a. ~ the visible and a part of
the ultra-violet are re-

7 4] quired, the quartz plate

- can be dispensed with

[_______J and a sealed-in platinum

wire joined to the iron

wire. Afterseveral days

running, gases may be

liberated and impair the

Y vacuum, causing the arc

) to acquire a tempera-

ture sufficient to melt

the glass. The lamp

should be tested from

time to time by holding

a piece of paper against

the glass. If it chars, it

Fia. 6. is time to reéxhaust the
tube.

The mercury arc lamps made of fused quartz are most satisfac-
tory in every respect, though rather expensive. The ultra-violet
radiations are so intense that the air becomes immediately charged
with ozone, and glasses should always be worn, as an exposure of
only a minute or two of the naked eye to the light results in a very
serious and painful inflammation. The glasses need not be dark,
as the harmful rays are absorbed by ordinary transparent glass.
Cadmium and zinc lamps can also be obtained of quartz. These,
however, require a certain amount of preliminary heating.

During operation they should be kept in communication with
the pump. After prolonged use (30 to 40 hours running), the
quartz often becomes partially devitrified, resembling ground glass,
and a black deposit sometimes forms on the inner walls. To
remedy this, the tube should be removed from the pump and heated
in an oxy-hydrogen flame, which restores the surface and burns off
the black deposit.

Color Screens or Ray Filters. — The monochromatic constituents
of a source of light such as the mercury arc can be separated by a
spectroscope, but color screens are more convenient, and have the
advantage that they permit us to utilize the entire source. There

P
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are countless absorbing substances at our disposal, colored salts of
metals and aniline dyes, solutions of which can be used in glass cells
made by cementing glass plates to annular strips cut from heavy
brass or glass tubing.

The following substances are most useful: cobalt chloride, copper
chloride, nickel sulphate, potassium permanganate, chrommm
chlonde bichromate of potash, picric acid, sodium chromate,
neodymium chloride, and praseodymium chloride. The last two
are very useful when combined with other filters for sharpening
the edges of absorption bands. We should have on hand also a
good collection of aniline dyes and especially the very useful com-
pound nitroso-dimethyl aniline, the numerous remarkable properties
of which have been investigated by the author. A very complete
list of the aniline dyes, with photographs of their absorption bands,
will be found in the Atlas of Absorption Spectra, by Uhler and Wood,
published by the Carnegie Institute, Washington, D.C., and a
more recent one, dealing in particular with the absorption in
th(é red region, by C. E. K. Mees, published by Longmans, Green,
& Co.

For separating the radiations of the mercury arc the following
solutions will be found suitable:

Bichromate of potash transmits the green and the two yellow
lines. Addition of a neodymium salt removes the yellow lines,
without reducing the intensity of the green line in the least. No
other'substance is as satisfactory as this. Cobalt glass 4 aesculin
solution transmits the 4359 line. Guinea green B extra (Berlin) +
chinin sulphate transmits 4916. Nickel sulphate is also useful.
Chrysoidine + eosine transmits the yellow lines 5790. The chry-
soidine should be dilute, and the eosine added until the green line
disappears. A very thick cell with a saturated solution of bichro-
mate of potash is perhaps as good. Methyl violet 4 R. (Berlin an.
Fabrik) very dilute, and nitroso-dimethyl aniline transmits the
ultra-violet line 3650. Methyl violet + chinin sulphate (separate
solutions) transmits 4047 and 4078, also faintly 3984.

The absorption bands of a number of substances are shown in the
form of a chart (Fig. 7), which will doubtless be found useful in
preparing screens. A very useful set of ray filters are made by
Wratten and Wainwright, Croyden, England.

A film of silver chemically deposited upon a quartz lens or plate is
practically opaque to all radiations except the ultra-violet region
3160-3260. The silver film should be of such thickness that a
window backed by a brilliantly lighted sky is barely visible through
it. Directions for silvering will be found in the Chapter on Inter-
ference Spectroscopes. I.enses prepared in this way have been used
by the author for photographing the moon, landscapes, and various
objects in ultra-violet light. Very dense cobalt glass combined
with a layer a centimeter or more in thickness of a saturated solu-
tion of hichromate of potash cuts off everything except the extreme
red above wave-length 69. This screen was used by the author i m
making infra-red landscape photographs. A clear blue sky
nearly black through it, while sunlit foliage comes out very bright-.
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A saturated solution of iodine in carbon bisulphide is opaque to all
visible radiations, and transmits freely the infra-red.

If, in addition to the substances enumerated above, we have a
collection of scraps of colored glass, we shall be sufficiently well
equipped in the way of ray filters for all ordinary optical and spec-
troscopic work.

Velocity of Light. — The first determination of the velocity of light
was made by a Danish astronomer Romer in 1676. From observa-
tions made on the eclipses of Jupiter’s satellites he showed that the
inequalities noted in their times could be explained by the finite ve-
locity of propagation of light. Since the time of rotation of the
satellites around the planet is constant for each satellite, they will
enter the shadow of the planet at regular intervals, and the times of
the eclipses can be predicted with the greatest accuracy. Romer
found, however, that the intervals between successive eclipses of a
given satellite varied gradually if the observations extended over a
year. The eclipses were found to occur earlier or later than the cal-
culated time, according as the earth and Jupiter were on the same,
or opposite sides, of the sun. The discrepancy was obviously due
to the time taken by light to travel across the earth’s orbit. Calcula-
tion s(lilowed that the velocity of light was about 192,000 miles per
secon

The second determination was made in 1728 by Bradley, who
discovered the phenomenon known as the aberration of light. He
observed that the apparent position of the stars shifted slightly from
time to time, and finally came to the conclusion that this small
apparent motion could be explained by taking into account the
earth’s motion in its orbit, together with the fact that light is propa-
gated with a finite velocity. The phenomenon of aberration will be
more fully discussed in the chapter on the relative motion of matter
and ether.

Fizeau’'s Method. — Galileo had made an unsuccessful attempt to
determine the velocity of light, by placing two observers at a great
distance apart, each furnished with a lamp. One observer uncovered
his lamp a.nd the second observer watched for the flash and removed
the screen from his lamp at the moment it appeared. The first
obeerver was to determine the velocity by noting the time elapsing
between the uncovering of his own lamp and the appearance of the
distant light.

This method failed obviously, owing to the enormous velocity of
light. In 1849 Fizeau made an experimental determination of the

Fia. 8.

velocity of light by means of a revolving disk furnished with a
toothed rim. The method is essentially as follows: A beam of light
was mtroduoed into the tube of a telescope by means of a collimator



18 PHYSICAL OPTICS

fitted in to its side, and was focussed by means of a reflecting plate
upon the rim of the toothed wheel (see Fig. 8). This point was at
the principal focus of the object glass of the telescope; consequently
the light, after passing between the teeth of the wheel, was made
parallel by the objective.

After traversing a distance of three or four miles, it fell upon a
second lens, which brought it to a focus upon a concave spherical
mirror, the centre of curvature of which coincided with the centre
of the lens. The light was thus returned as a parallel beam over
the same path, and entered the eye-piece at E, passing through the
reflecting plate. If the toothed wheel is rotated the beam of light
will be made intermittent, and if the speed be great enough the light
which passes through the space between the teeth will, upon its re-
turn, be cut off by the adjacent tooth, which in the meantime has
advanced into the position previously occupied by the space. On
looking into the telescope the observer sees at first a bright star,
which diminishes in intensity as the speed of rotation is increased,
finally disappearing entirely. Further increase in speed causes the
reappearance of the star, the light passing through a given space,
falling upon the next adjacent space upon its return. Fizeau expe-
rienced great difficulty in determining accurately the speed at the
moment when the eclipses occurred. The image of the distant star
was never bright, and the light reflected from the teeth of the wheel
caused a general illumination of the whole field. To obviate this
difficulty Young and Forbes, in repeating the experiment, bevelled
the teeth so that the light reflected from them fell upon the black-
ened sides of the telescope. The teeth were also blackened so as to
diminish their reflecting power as much as possible. In 1874 Cornu
repeated the experiment with certain modifications. To avoid the
difficulty of determining the exact moment at which the star was
eclipsed, he made use of an electrical chronograph, arranged so as to
record every hundred revolutions. Seconds were marked by a clock,
and tenths of a second by means of a vibrating spring. By means of
a key the observer could record any instant at which he wished to
know the velocity. The speed and its rate of change could he deter-
mined at every instant from the record of the chronograph. Instead
of attempting to determine the moment of complete extinction,
Cornu compared the brilliancy of the image with a light of fixed in-
tensity. On increasing the speed the intensity of the image sank,
and the speed of the wheel was recorded at the moment at which it
was equal to the intensity of the standard light. After extinction the
star reappeared and the speed was recorded at the moment when it
regained its former brightness. The speed corresponding to com-
plete extinction was the mean of these two. Cornu’s final result for
the velocity was 300,330 Kms. per sec. in air, or 300,400 in vacuo.

Foucault’s Method. — Wheatstone had suggested that a revolving
mirror might be employed in the determination of the velocity
of light, and his suggestion was taken up by Arago, but it remained
for Foucault to carry out the experiment in a form capable of giving
accurate results. The arrangement of his apparatus is shown in
Fig. 9. Sunlight after transmission through an aperture at S and
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an achromatic lens / falls upon a mirror R, which can be rotated
at high speed. A concave mirror M fixed at a distance of several
metres returns the light to the revolving mirror. If the mirror R
is at rest, the light returned by it after reflection from the inclined
plane mirror comes to a focus at a.

The axis of the mirror R is at the centre of curvature of the
mirror M, consequently the cone of rays, which converges upon M,
is returned over the same path,
and the rotation of -R will not
affect the position of the image
at a. This, however, is only
true if the mirror is in the
same position when the rays
meet it a second time, as will
be readily seen by considering
the passage of a ray from S to a. Fic. 9.

If the mirror turns through an
appreciable angle while the light is traversing the distance 2 RM, the
image will be shifted to a point a’.

The revolving mirror was driven by an air turbine, the speed
being determined by a stroboscopic method. The displacement of
the image amounted to only .7 mm., which gave for the velocity
of light 298,000,000 metres per second.

Michelson’s Experiments. — Foucault’s method was improved by
Michelson, who placed the lens between the two mirrors (Fig. 10).
The lens was 8 inches in diameter and had a focal length of 150
feet. The revolving mirror was placed 15 feet inside the principal
focus, and the mirror M at a distance
of 2000 feet. Deflections of the image
amounting to 133 mms. were obtained,
which made it possible to dispense with
the oblique reflecting plate, and observe
the image directly, with an eye-piece
placed to one side of the slit. The speed
of the mirror was determined by means
of a tuning fork, one of the prongs of which carried a light mirror,
which reflected the light from the revolving mirror into the eye-
piece. When the fork vibrated, the spot of light was drawn out
into a band, which broke up into a number of moving images as
soon as the mirror was set in rotation. A single stationary image
was obtained only when the mirror made as many turns per second
as the frequency of the fork; this condition was easily secured by
regulating the air pressure at the turbine. The mean result for the
velocity of light (reduced to the velocity in vacuo) was 299,910 + 50
kilometres per second. No indication of the phenomenon alleged
to have been observed by Young and Forbes was observed. A
difference of velocity between the red and blue radiations, as large
as their experiment indicated, would have resulted in a drawing
out of the image into a spectrum 10 mms. in length.

iments were also made on the velocity of light in bisulphide
of carbon, a tube three metres in length being interposed between the
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mirrors. The ratio of the velocity in air to the velocity in this fluid
was found to be 1.758, while the ratio indicated by the refractive
index is 1.64. This discrepancy will be explained in a subsequent
chapter. Professor Michelson also experimented with lights of
different colors, and found that red light travelled 1 or 2 per cent.
faster than green light in the carbon bisulphide.

Newcomb’s Experiments. — A series of experiments were made by
Newcomb at Washington in 1880-82, with an apparatus of slightly
different type. Sunlight entered the slit at S (Fig. 11), and, after
reflection from a mirror at the elbow joint, passed through the tele-
scope lens and fell upon the revolving mirror m, from which it was
reflected along the line z to the distant mirror. The object glass of
the receiving telescope was immediately below that of the sending
telescope, the light entering it being received from the lower part of
the revolving mirror. This consisted of a rectangular prism of steel

N W a W AW A S W =& o= -
‘ -~ v-v",' -

Fia. 11, Fia. 12.

(Fig. 12), the surfaces of which were nickel plated, driven by means
of an air blast. The speed was regulated by means of a slight counter
blast directed against the lower fan wheel. By employing two lenses
in the manner indicated, the diffused light from the strongly illumi-
nated upper portion of the mirror did not enter the receiving tele-
scope. The mirror could be driven in either direction, by interchang-
ing the direct and counter blasts; the displacement measured could
thus be doubled.

The quantity measured directly was the angular deviation of the
return image, and not its linear displacement ; this was accomplished
by swinging the observing telescope, the eye-piece end moving along
a graduated arc, the divisions of which were read by means of a pair
of microscopes.

Newcomb’s final result was, for the velocity in vacuo,

v = 299,860 + 30 kilometres.

Group Velocity. — An important distinction exists between the
velocity of a group of waves and the velocity of a single wave.
We can get a very good idea of what is meant by group velocity
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by throwing a stone into a quiet pond, and watching the circular
waves which spread out. If the attention be fixed on a single wave-
crest at the centre of the group, it will be seen presently to lead the
group, the waves ahead of it appearing to die out, and in a few
seconds its amplitude will become so small that the eye can no longer
be kept on it. There are just as many waves in the group, however,
as there were before, and a little further observation will reveal the
fact that, as the waves in front die out, new ones appear in the rear.
The group is obviously moving forward with a velocity less than that
of the individual waves.

The explanation of the phenomenon was first given by Stokes, who
regarded the group as formed by the superposition of two infinite
trains of waves, of slightly different wave-length, which advanced in
the same direction but with different velocities.

Lord Rayleigh was the first to draw attention to the bearing of
group velocity upon optical problems. In his article on “ The Ve-
loclty of Light ”’ ( Nature, 1881), he called attention to the fact that,
in all experiments made for the purpose of determining the veloclty .
of light, it is the group-velocity, and not the wave-velocity, which is
actually measured. What is actually determined is the velocity .
with whlch some pecuhanty impressed upon the wave-train moves .
forward. Since it i8 impossible in the case of light to pick out and
watch a single wave, the best that we can do is to measure the

with which a block cut out of a wave-train, advances. If
the medium is free from dispersion, ¢.e. if waves of all possible .
lengths are propagated with the same velocity, the group-velocity !
and wave-velocity will be the same, the group being propagated ‘
without alteration. \

This will be made clear by reference to Fig. 13. In the lower
diagram we have two superposed trains of waves, moving in the
direction of the arrow. The
resultant disturbance is indi- Wf\f\j\/\/\/’\,{\/\z\
cated in the upper diagram.

The longer waves (dotted
line) are out of step with the
shorter (solid line) at A and A} X/\¥X 7 AVAVH

C, and the resultant is zero A B c

at these points. At B, where e
there is agreement of phase, Fia. 13.

the resultant amplitude is double that of the single waves. If now
the velocities of the two sets of waves are equal, it is evident that
the group shown in the upper diagram will move forward without
alteration with the wave-velocity. If, however, the shorter waves
move at the higher speed, it is evident that they will presently get
out of step at B, and into step at C, which now becomes the centre
of the group. The group thus advances with a velocity greater
than that of the individual waves. If the reverse is the case, the
amplitude to the left of B increases as the group advances, the
amplitude to the right of B diminishing, A becoming eventually
the centre of the group. In this case the group-velocity is less than
the wave-velocity.
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We will now derive an expression for the group-velocity. Let the
longer wave A’ (dotted line in Fig. 14) move with a velocity V'>V,
the velocity of the shorter wave A. Let T
be the time required for the point marked
V'’ to overtake the point marked V. When
this event has occurred, the centre of the

group, defined as the point of maximum
_— resultant amplitude, and originally at B,
Fro. 14 will have moved back a distance of one
T wave-length.  Now the crest V'’ is ap-
proaching the crest V with a velocity V' — V, therefore (V' — V)T =
distlal.nce V'V=XN—-X If wewritedV=V" — Vand di=\ — A,
we have

1
dv
dA
During the time T' the A-wave train moves forward a distance VT,
therefore the centre of the group as defined above has moved a dis-

tance
X=VT dV)
— _A= '7—A—1
<‘ d\r /7’

and the group-velocity is given by dividing this quantity by T.
Calling U the group-velocity, we have

T =

dv
A=—
v=V- dA

If the medium is free from dispersion'ji:\i =0, and U=V.

We shall have occasion to use the formula for group-velocity in
studying the action of a prism on white light, which will be taken up
later.

The difference between U and V only comes into play in deter-
minations of the velocity of light in strongly dispersive media, the
correction to be applied amounting to 7.5% in the case of bisulphide
of carbon.

Michelson, employing the revolving mirror method, which has
been shown by Rayleigh to yield U and not V, found the velocity of
light in air 1.758 times greater than in this fluid, while determinations
made by measuring the refractive indices gave the value 1.64. If
we increase 1.64 by 7.5% we obtain the value 1.76, which is in close
agreement with the value observed by Mlchelson

It is worthy of remark that determmatlons of the velocity of light
by observations made on the aberration of light from the stars, give
us V. Romer’s method, however, yiclds U7, and the close agreement
between the values obtained by these two astronomical methods
indicates that light is propagated across interstellar space without
dispersion.
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Independent evidence that waves of all lengths travel with the
same velocity in the free ether, is furnished by the variable star
Algol, which shows no color sequence when increasing in brightness,
as would he the case if waves of different lengths travelled with
different velocities.

The Doppler-Fizeau Principle. — Doppler, in 1842, called atten-
tion to the change in the pitch of a sound, which resulted when the
source was moving towards or away from the observer, and applied
the principle to luminous disturbances radiated from bodies in
motion, explaining the colors exhibited by certain stars as due to
their proper motion. The acoustical phenomenon is most fre-
quently heard when travelling in a railroad train. If a whistling
locomotive is passed, the drop in the pitch is very noticeable, espe-
cially if the locomotive is moving rapidly in the opposite direction.
Doppler’s application of the principle to stellar phenomena was
unsound, and Fizeau appears to have been the first to show that the
effect would manifest itself as a slight shift in the position of the
bright or dark lines in the spectrum. If the source of light is mov-
ing towards the observer, the frequency of the disturbance as it

the observer is increased, and the wave-length diminished :
the spectrum lines are therefore shifted towards the violet : the re-
verse is true when the source is moving away in the line of sight.
By photographing the spectrum of a star alongside of a comparison
spectrum, it is possible to determine, not only whether the star is
moving towards or away from us, but also the velocity with which it
approaches or recedes. The principle has had wide applications
in astro-physical research, and the rapidly accumulating data
regarding stellar velocities will, at some future date, in all proba-
bility furnish the key to the solution of that greatest problem of
astronomy, the nature of the motion of the multitude of suns which
make up the universe.

Double stars have been discovered by the Doppler effect, the com-
ponents of which no telescope will show separated, and their time of
revolution about their common centre of gravity determined. Such
stars are called spectroscopic binaries. The first was discovered at
the Harvard Observatory by Pickering. Observations of a number
of spectra of this star, taken at different times, showed that the lines
became double at stated intervals, an effect which could only be
accounted for by assuming the source of light to consist of two bodies
which alternately approached and receded, in other words two bodies
revolving around their common centre of gravity.

Keeler applied the principle to the study of the rings of Saturn,
and showed that each portion of the ring was rotating at the speed
which an isolated satellite would have at the same distance from the
planet.

The effect was first obtained in the laboratory by Bélopolsky in
1901 (Astro. Phys. J. 13, pg. 15-24), who reflected a beam of light
from a system of moving mirrors, subsequently analyvzing the light
with a spectroscope. The displacement of the spectrum lines was of
the calculated order of magnitude, which was, however, an exceed-
iagly small quantity. The minimum velocity capable of modifying
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the wave-length to such a degree that the spectroscope will note the
change is a kilometre or perhaps half a kilometre a second. The
change of wave-length resulting from reflection from a moving
mirror is double the change resulting from the motion of the source
with the same velocity. Bélopolsky made use of multiple reflections
from two systems of mirrors, mounted on the rims of a pair of op-
posed wheels, which could be revolved at high speed. In this way
he was able to obtain a shift of the spectrum lines which, though
small, was easily measurable.

The experiment was repeated in 1907 by Prince Galitzin and J.
Wilip with Bélopolsky’s apparatus. They employed an echelon
spectroscope and the mercury arc, and obtained much larger shifts
than those observed previously on account of the much greater
power of the spectroscope. The mirror wheels rotated at a speed
of 45 revolutions per second, which represented a linear velocity of
the mirrors of 30 metres per second. Six reflections were used and
the displacement amounted to ¥y of the distance between the spectra
of different orders. This was a double displacement obtained by
two exposures, with the direction of rotation of the mirrors reversed
between them. It is a very small amount, as we shall see when we
come to the study of the echelon, but the calculated velocity of the
mirrors agreed well with the observed. For example, the velocity
calculated from the line shift in one case was .405 Km. per second
while that determined by measuring the speed of the wheels was
.379.

More recently the Doppler effect has been found by Stark in the
case of the light emitted by the canal rays in vacuum tubes. The
canal rays-occur where the cathode is perforated with small holes,
and they are known to consist in all probability of the positively
charged residue of the atom after the negative electron has been
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expelled. They are hurled down the tube with a prodigious veloc-
ity, and if the stream is pointed towards the spectroscope a line is
observed shifted towards the violet. If the tube is oriented so that
the stream is directed away from the instrument, the shift is in the
opposite direction. If, however, the canal ray stream stands per-
pendicular to the collimator of the spectroscope, no shift is observed.
The effect is not at all difficult to observe, and the canal ray tube
can be made in a few minutes from some small pieces of glass tubing.
The electrodes can be sealed in with sealing wax, if the discharge is
prevented from reaching the wax joint. The construction is shown
in Fig. 15. The cathode should be made from a piece of aluminum

plate a trifle over a millimetre thick, perforated with numerous holes
not over a millimetre in diameter. The anode is formed from a short
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The motions of the molecules of a luminous gas modify slightly
the wave-length of the emitted light. Since the molecules are mov-
ing in all possible directions, with all sorts of velocities, the result
is that the spectrum lines appear slightly broadened, the broadening
increasing with the temperature. The subject has been fully
treated by Lord Rayleigh (Phil. Mag. (5), 27, page 298, 1889).

The change in the period T, of the radiation coming from a
source of light moving with a velocxty v, is given by the equation

T’ = T(l + '—’),
C

in which T is the actual period of the vibration, 7’ the period of the
radiation, and c the velocity of light. It is to be carefully observed
that when the source is in motion, the frequency of the vibration in
the source differs from the frequency with which the waves pass by
the observer, the former being unaffected by the motion.

The above equation for the change in the frequency of the vibra-
tion applies to the case of a stationary source of light and a moving
observer, as well as to a moving source. The two conditions are,
however, represented by the same formula only when the veloclty
of translation is small in comparison with the velocity with which the
waves travel. That this is true is evident from the following very
elementary consideration. Let A be a source which emits ten waves
per second, the waves travelling with a velocity of one metre per
second. Let an observer B advance against this wave-train with a
velocity of 3 m. per second. It is evident that the waves will pass
him at the rate of 15 per second. Though the actual wave-length
remains unaltered, the frequency of the vibration so far as B is
concerned has been increased from 10 to 15. The deviation of
waves by a prism depends upon their frequency; consequently in
the case of light waves we obtain the spectrum line in a shifted posi-
tion when the spectroscope is moving with a high velocity towards
the source. Suppose now that B remain at rest, and the source A
to move towards him with a velocity of # m. per second. During
the time occupied by the source in moving 1 m., it emits ten waves.
These waves will be crowded together into a space of half a metre,
that is, between the point occupied by the first wave of the train of
ten waves, at the end of one second, and the point occupied by the
source at the same time. In other words the wave-length has been
halved. This wave-train will sweep by the observer with a velocity
of 1 m. per second, or with a frequency 20. The Doppler effect is
therefore greater for the case of a moving source than for a moving
observer, when we are dealing with velocities comparable with the
velocity with which the waves travel.

The number of waves of frequency N, coming from a fixed source,
which in one second pass an olf)server moving towards the source
with a velocity v, is N.+£ or } : v

If, however, the observer is fixed, and the source moves with a

velocity v, the wave-length is changed from A= y to A= V-v

N N

, in which V =velocity of light.
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and the number of waves which pass the observer per second is the

velocity V divided by this number, or i’VTv N. If a source moves

with a velocity equal to or faster than that of the radiation, no peri-
odic waves are given out. There is, however, a single wave like
the bow wave of a ship. The sharp click of a high velocity bullet
as it flies past us is an illugtration of this. Calculate the change
of wave-length produced by reflection from a mirror moving towards
the source with a velocity equal to one-half that of the radiation.
The image in the mirror appears to move with a velocity equal to
that of the radiation, but it will be seen that the effect upon the
wave-train is not the same in the two cases.



CHAPTER 11
RECTILINEAR PROPAGATION OF LIGHT

Huygens’s Principle. — One of the objections which was first
urged against the wave theory of light was its failure to account for
the rectilinear propagation of luminous disturbances, and the forma-
tion of shadows. Waves of sound and water waves were observed
to bend around the corners of obstacles, and it was perhaps natu-
rally argued that if light consisted of a wave-motion, it should behave
in a similar manner. The objection was partially answered by
Huygens, though it remained for Fresnel to give the
complete explanation.

Huygens’s conception of the manner in which wave-
motion was propagated was as follows: He regarded
every vibrating point on the wave-front as the centre
of a new disturbance: these secondary disturbances,
travelling with equal velocity, are enveloped by a sur-
face identical in its properties with the surface from
which the secondary disturbances start, and this sur-
face forms the new wave-front.

For example, in Fig. 17, consider O a luminous point,
and A B a portion of the spherical wave-front. Adjoin-
ing points a, b, ¢, d, etc., on this wave-front are
vibrating in unison and can be regarded as centres
of new disturbances, which spread out around them
as indicated by the dotted lines. It is evident that
A  these secondary waves are enveloped by the spherical
Fio. 17 surface A’B’, and this surface is the new wave-front.
"7 If the luminous point is at a great distance, and we
are dealing with a plane-wave, we have the condition shown in the
lower figure.

This view of wave prop-

agation is known as the A

Huygens principle. It can % :

be applied to the calcula- b
A ¢ A a ¢

tion of the position of a
reflected or refracted wave- Fia. 18.

front, by regarding the :

points on the reflecting or refracting surface, as they are collectively
or successively struck by the incident wave, as individual centres of

28
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small part becomes a complete wave, and again if a small portion of
this secondary wave is allowed to pass through a small aperture, it
becomes in turn a complete wave.

Before considering in detail Fresnel’s explanation we must make
an assumption regarding the nature of the secondary wavelet, which
is based on the circumstance that no disturbance is radiated back-
ward. An opaque screen which absorbs all of the energy falling on
it has no effect whatever on the vibration of the medium between
it and the luminous source.

From this we infer that the secondary wavelet is propagated only
forward, and lies wholly in front of the plane tangent to the wave
front at the centre of the wavelet. We are also justified both by
theory and experimental evidence in assuming that the effect of the
secondary wavelet is greatest on the line which is normal to the
tangent plane at the point of tangency. x
This will be better understood by reference
to Fig. 22, where AB is the wave-front,
a the centre of any secondary wavelet, and
zy the tangent plane behind which we
assume that the secondary wavelet never
spreads. The effect of the wavelet is b--.- -.-_.---Co,

greatest along the line, or in thc direction
ab, less along ac, and falls off continuously,

having the value 0 in the direction az. This |
may be summed up by saying that the effect A
of the secondary wavelet decreases with c !
increasing obliquity. The reason for the y
absence of a back-wave has been given. o, 9

1G. .

We will commence the investigation of

Fresnel’s treatment of the subject by examining the effect of a linear
wave on a point P in front of it.

s Let AB be the wave-front (Fig. 23) which

me W€ may consider moving as a whole up and

down parallel to itself. Thus all the particles

M2 on AB move together, and the secondary

1 waves leave them at the same moment.

Draw a perpendicular from P to the wave-

F ¢ front, meeting it at C, which point is called

the pole of the wave with reference to the

point P.

Lay off on A B points M,, Ms, M, M,, etc.,
so that the path from M, to P is half a wave-
length longer than the path from C to P, and
.'A M, half a wave-length further from P than M,,
Fia. 23. and so on. If secondary wavelets start simul-

taneously from these points and move with the
- same velocity, the disturbance from C will reach P first, since CP is
the shortest path, and the wavelet from M, will reach P half a wave-
length behind the one coming from C, since we have so located M, on
the wave-front that the path PAM, is half a wave-length longer than
PC. This means that the crest of the wavelet from M, reaches P at

S
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the same moment that the trough of the wavelet from (' is
through it, or the waves are in opposite phase and would destroy each
other if both were equal. In the same way other wavelets coming
from points lying between C and M, will reach P with phases oppo-
site to those coming from corresponding points between M, and M,.
The same will be true for wavelets coming from points between
M QAI 3 and M 3M 4

To determine the effect of the whole wave at P we determine the
total effect or resultant of all the secondary wavelets, paying atten-
tion to their phases as well as their amplitudes. The effect at P of
each of the elementary arcs into which we have subdivided AB we
consider as proportional to its length, and inversely proportional to
its distance from P. As we recede from C the effect will also dimin-
ish on account of the increasing obliquity.

We will now determine the relative lengths of the arcs into which
we have subdivided A B, Fig. 24.

Let the distance from the pole of the wave to P be b, then the

distance of M, from P is b+% and the length of the arc CM, is

[ AV o bA | \\2 Y
‘J(b'*' é) —b or \752+2—2—+% —& or bk,
2
if we neglect %, which is very small in comparison to bA.

The path PM,=b+ 2% or b+A\; therefore

CM:=V(b+2)-b
= Vb +2bA + A2 —b*=V2bA,

neglecting A2, which is small.
Therefore

CM,=VbA, and CM,=Vix, Fia. 24.
CM,=V2bA, MM,=V2b—Vbr=Vbr(V2—-V1),
CMy,=V3b\, MM =+V3bA—V2br=Vbr(V3-V?2).

The arcs thus decrease rapidly in length in the neighborhood of
the pole. The length of any arc at distance R (G in the diagram)

is determined as follows, since the small right triangle at G is similar
to the right triangle PCG.

R
2 VR — b?

a quantity which decreases with increasing R, approaching the value

G: ——R VR™~b or G=

)—5 as a limit. The arcs far removed from the pole decrease slowly

in length, approaching the limiting value g-
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Besides decreasing in length, the elements become less and less
effective owing to increasing distance and obliquity.

Remembering that adjoining elementary arcs send disturbances of
opposite sign to P, we see that the effect of all is represented by
a series of a.ltematel positive and negative members, which at ﬁrst
decrease rapidly, then more slowly approaching 0 in value, since the
very remote arcs are inoperative owing to their obliquity. Calling
the effect due to the central arc [, and that due to the following ones
m, m’, m"’, etc., the whole effect is represented by the series

l—m' +m'" —m'"’ +m*®,

the value of which is a fraction of the value of the first member.

Therefore the effect of the entire wave at P is less than that due
to the first element acting alone. If we were to screen off all of the
wave except the first element, the illumination at P would be greater
than that due to the whole wave, a surprising conclusion which, as
we shall soon see, can be verified by experiment.

The wave-length of light is so small that with P at a distance of
10 cms. from the wave-front M, would be scarcely more than .2 mms.
from the pole of the wave. At a short distance from the pole the
arcs would become very nearly equal and opposite in their effect,
consequently the effective portion of the wave reduces itself to a
comparatively small area around the pole; and if we screen off this
region we shall have darkness at P owing to the destructive inter-
ference between the disturbances coming from the outlying ele-
mentary arcs, or a shadow will exist behind the screen.

Effect of a Plane-Wave on an Exterior Point. — Thus far we have
been considering wave-motion in two dimensions only, a hypotheti-
cal case. Let us now find an analogous treatment for waves moving
in space, which is the condition under which we observe them in our
experiments.

Consider a plane-wave (Fig. 25) moving towards P, an exterior
point : we require the effect at this point of all the secondary wave-
lets emanating from the wave-front. Draw "

a perpendicular from P to the wave-front, -
intersecting it at C, the pole of the wave
with respect to P. Around C describe cir- | i
cles on the wave-front such that the first is
half a wave-length further from P than C is,
the second 2 half wave-lengths, etc. The
rings thus formed on the wave-front will be
analogous to the elementary arcs into which Fra. 25.

we divided the linear wave, that is to say, the secondary disturbances
coming from any circle will reach P half a wave-length ahead of
thoee ing from the circle encircling it.

We the effect of the disturbances coming from each ring
as proportional to its area and as decreasing with increasing distance
and obliquity as before. Let us now investigate the areas of the rings.

The radii of the circles are obviously equal to the distances CM,,

CM, on the linear wave, namely VbA, V2bA, V3bA, etc., and the
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areas or mr:
wbA, 2 7bA, 3 wbA.

Neglecting the square of A as we have done, we find the area of the
central circle and each surrounding zone to be equal or =bA.

For a zone at distance B from P we have its width given by
A R
2 VR -b?

Its circumference is 27V R?—b? and its area, or the product of
these two quantities, is 7AR. |

The effect due to the disturbances coming from a single one of the
zones will be proportional to its area and inversely proportional to
its distance. The slight increase in the area of the zones as we
recede from the centre of the system is compensated by the increased
distance, so that, other things being equal, we could regard the
successive zones as producing equal and opposite effects at the point.
The zones, however, become less and less effective as we recede from
the centre owing to the increased obliquity. We can therefore
represent the resultant effect by a series of terms of alternate sign
which decrease slowly at first, and then more rapidly, eventually
becoming zero, thus:

, as in the case of the element of the linear wave.

S=my—ms+ms—m,, etc.

The sum of this series is usually stated as being equal to one-half
of the first term plus one-half of the last term; the method usually
adopted to prove this consists in balancing the second term against
half of the first and half of the third, and so on. Schuster has shown
that this treatment is too arbitrary, no reason being given why
the balancing is not effected in some other way, for example, by
considering the second term balanced by three quarters of the first
and one quarter of the third, which would make the resultant out-
standing effect approximately equal to one quarter of that due to the
first member acting alone. Schuster shows in what cases the addi-
tion of the series can be effected in the manner indicated. He first
writes the series in the two following forms:

S="1 +(m‘ —ma+ ’%) +(’1’i‘—m.+’i") +<——m"-’ +m,_y+ ?—"—) U

2 "\ 2 2 2 2 2/ 2"
S — M2 _ (ﬂ_ts_ "_u> (ﬂ«_ me
m 2 [2m,+2+2 rm,+2
mn—3 mn—l mn—l
+ I — ”" - - - ne
( 2 Mp_2+ 2 ):] 2 +m

Suppose first that each term of the original series is greater than
the arithmetical mean of the two adjacent terms. From the above
equations we see that

me m, m m
m——4+m,— 2SS4 T
2 2 2 2’
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for in both equations the terms bracketed are all small negative
quantities, and the value of S lies somewhere hetween the two quan-
tities given above.

If m, is very nearly equal to m, and m, nearly equal to m,_,, the
two limits lie close together, and we may write

M  m,
S 2 * 2

If the series is such that each term is less than the mean of its
neighbors, S lies between the same limits (transposed).

If in the first p terms of the series each term has a greater value,
and in the remaining part a smaller value than the arithmetical mean
of the terms between which it stands, we may break up the series
into two, and obtain the sum

=m1 mp m—P+1 ?”—,!.
S 2:}:2:F 2 +2

It is thus clear that the expression for S given above will be the
correct summation only, if the series can be broken up into a small
number of separate series for each of which the value of a term is
either smaller or greater than the arithmetical mean of the terms
between which it stands, so that the sum of all such values may be
neglected.

The problem therefore reduces to a determination of the effect due
to one-half of the central zone.

The secondary wavelets from this zone unite into a disturbance the
phase of which is midway between those of the wavelets from the
centre and rim, for we may divide the zone into a series of concentric
rings of equal area, the effects of which at the point areequal in
amphtude and of phases ranging over half a complete period.
These vibrations may be compounded as vectors by the method
given on page 158. The resultant amplitude will be very nearly the
diameter of a circle, the semi-circumference of which is made up of
the vectors which represent the amplitudes contributed by the
elementary zones into which we have divided the central circle.
The direction of the diameter makes an angle of 90° with that of the
first vector, consequently the phase of the resultant is a quarter of a
period behind that due to the element at the centre. We must
consequently consider that the secondary waves start with a phase
one quarter of a period ahead of that of the primary wave. The
amplitude of the resultant bears the same ratio to the amplitude
which would be produced if all the disturbances arrived in the same
phase, that the diameter bears to the semi-circumference, i.e. 2/x.
The matter of the acceleration of phase of the secondary wavelet
of a quarter of a period, with respect to the phase of the primary
wave, has sometimes been regarded as a sort of mathematical fiction.
If the advance of phase really exists, a secondary wavelet, if isolated,
would reach a distant point with a phase a little in advance of that of
the primary wave which originated it. That this is actually so was
shown by Gouy.!

1Gouy, * Sur la propagation anomale des ondes,”” Comptes Rendus, 1890.
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aperture would be greater than if the screen were not present.
And now comes a very curious fact: suppose we increase the size
of our aperture until it contains another zone. The disturbances
coming from this ring will be out of phase with those coming
from the central circle, and will entirely destroy them. Thus
by increasing the size of the hole we can reduce the illumina-
tion to zero. The experiment can be performed with very sim-
ple apparatus, provided one has a dark room of sufficient length.
A pin-hole in a piece of thin sheet metal illuminated with arc or sun
light makes a suitable source of light. A first-class iris diaphragm,
such as is provided with the best photographic objectives, furnishes
us with an aperture the size of which can be varied at will. The
diaphragm should contract to a diameter of 3 mms. or less, and the
outline of the opening should be circular and not polygonal, as is the
case with the cheaper kinds provided with but few wmgs Suppose
the smallest aperture to have a radius of 1.5 mms.: we require the
distance of the point so situated that only the central circle of the

zone system is exposed. The formula CM,= VbA shows us that, if
we put A=.0005 mm., the distance of the point is 4.5 metres. This
is for plane-waves, or with our source at a great distance. For the
condition of source and point at equal distances from the aperture

we substitute i for % in the original formula, for now there will be a

path difference on both sides of the screen ; in other words, the vibra-
tion at the edge of the aperture will be slightly behind that at the
centre. The distance now increases to 9 metres. Clearly we shall
need a long room for our experiment, for the source must be 9 metres
behind the screen, or our total optical path must be 18 metres. We
can, however, reduce this by one-half by using a small reflector of
silvered glass, an excellent arrangement being to so arrange
things that the diaphragm and the illuminated point are close to-
gether. To accomplish this we place it at a distance of 9 metres
from the source and mount our mirror 4.5 metres behind it, reflecting
the light back to a point a little to one side. If we hold a sheet
of paper here we shall see a little point of light. Put a little drop of
white paint on a bit of glass, and mount it in such a position that
it ies in the centre of the small spot of light. This forms our
illuminated point. Now, increase very slowly the size of the dia-
phragm and the light gradually fades away, the drop of paint pres-
ently becoming invisible. Twice as much light comes through the
hole as before, yet the point is in darkness. The law of the conser-
vation of energy tells us, of course, that no light has been destroyed.
It has simply gone somewhere else, and where it has gone does not
concern us at present. The fact that it no longer manifests itself at
the point in question is sufficient.

Let us now try the converse of this experiment by substituting for
the aperture a small circular disk of the same diameter. According to
Huygens’s theory, if placed over the central zone, it should cut off
the illumination at the point entirely. On the Fresnel theory we sim-

y remove the first member of the series, and the effect is represented

y theremainder of the series, namely, half the second member, or the
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illumination is unaffected by the interposition of the circular disk,
and this is precisely what we find to be the case. By increasing the
size of the disk we cut off another zone, still without influencing the
illumination, and this may be continued, not indefinitely, but until,
owing to the increasing obliquity, the effect of the zones begins to
diminish appreciably. We thus see that the centre of the shadow of
a circular body may, under certain conditions, be as brightly illumi-
nated as the surrounding field, a proposition due to Poisson.

Fresnel’s memoir on dlffractlon was presented to the French Acad-
emy and reported on by Poisson, who raised the objection that if the
treatment were applied to the case of a circular disk (a case which had
not been treated by Fresnel), it would lead to the conclusion that the
illumination along the axis of the disk would be the same as if the disk
were absent, which was supposed to be a reductio ad absurdum. In
this case it is clear that the illumination will be represented by the
above-mentioned series, with as many members removed as there
are zones covered by the disk, which will be, as before, one-half of the
first exposed zone, and if we assume the zones to produce equal
effects, the illumination should be the same as without the disk. As
a matter of fact, the experiment had already been recorded by
Deslisle, but it had been forgotten, and was rediscovered by Arago
and Fresnel, who observed the bright spot in the centre of the
shadow of a circular disc.

This experiment is easily performed with a small disk of metal,
a copper cent, for example. If a coin is used, a new one should be
selected, the edge of which is smooth and undented. It should be
supported by means of three fine threads, which can be attached to
the coin with wax. Using the same source of light as before, with
the coin mounted at a distance of three or four metres, we shall find,
if we explore the region behind the'coin with a low-power eye-piece,
that there is a brilliantly illuminated region along the axis of the
geometrical shadow. The illumination is faint in the immediate vi-
cinity of the coin, owing to the irregularities of the rim, as will be
explained later, but at a distance of several metres behind the coin it
is nearly as bright as if the coin were absent. If the eye is brought
into coincidence with the luminous spot, it will be found that the
light comes from the edge of the coin, which appears brilliantly
illuminated. If the eye is moved a little to one side, the ring
breaks up into two spots of light situated on opposite sides of the
coin. We arc now getting the light which bends into the shadow
radially, without the great reénforcement due to agreement of phase.

Zone-Plate. — A remarkable verification of Fresnel’s theory is
furnished by what is known as a zone-plate. If we describe on a
large sheet of white paper circles, the radii of which are proportional
to the square roots of the natural numbers, we shall have very nearly
an exact drawing of the zone system, the neglected terms containing
the square of A introducing a very slight error. If now we blacken
‘the alternate rings with ink, and take a greatly reduced photograph
of the whole on glass, we shall obtain a device which will enable us to
screen off the alternate zones on the wave-front. Suppose we inter-
cept a plane-wave with such a plate and consider the illumination at
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a point so situated behind the plate that the central circle of the plate
corresponds in size and position to the first zone on the wave-front.
The black rings stop all the secondary disturbances from the alter-
nate or odd zones, which previously neutralized those coming from
the even ones, consequently all the secondary disturbances coming
from that portion of the wave-front covered by the plate reach the
point in the same phase, and the illumination will be very intense.
The whole surface of the zone-plate will send light to the point, the
action being very similar to that of a convex lens. The distance of
the illuminated point from the zone-plate we may speak of as its
focus, and we readily see that the smaller the zones the shorter the
focal length. .

In the earlier edition of this book I gave a greatly reduced copy
of such a drawing. A better method has recently been found and
a second plate was prepared in the following way: A photograph
was made of the circular system of interference rings obtained by
passing the green light of the mercury arc through a combination
formed by a large lens of long focus in contact with a flat glass
plate. The two surfaces in contact were half silvered, which gives
us a system of rings by transmitted as well as by reflected light.
Photographs of these rings discovered by Sir Isaac Newton will be
found in the Chapter on Interference, where it will be shown that
the rings are on the same scale as the Huygens zones. A small
scale photograph of Newton’s rings will serve therefore as a zone-
plate. As the number of zones obtained in this way was more
than twice as great as the number in the original drawing, it ap-
peared to be worth while to make a new plate. The photograph
of the interference rings was mounted on the tool carriage of a
lathe, and observed under a microscope provided with a cross-hair.
Circles were now turned on a brass plate, the advance of the tool
being controlled by watching the transit of the rings across the
field of the microscope. Two hundred and fifty rings were cut in
this way, and Plate 2 was printed from the resulting engraving.
It is possible in this way to obtain lines much finer and sharper
than those yielded by any photo-engraving process. (The omis-
sion of one ring was my fault and not Sir Isaac’s!) Very good
zone-plates can be made by making photographic reductions on
glass of either plate, the perfection of which will depend upon the
accuracy of the focus and the excellence of the lens used in making
them. Lantern slide plates are fairly satisfactory, but the best
results are obtained with a collodion emulsion on thin plate glass.
(See Lippmann photographs for directions for preparing such
emulsion.) The variation in the relative widths of the bright and
dark rings will be found instructive when we come to the consid-
eration of the zone-plate in the Chapter on Diffraction, in connec-
tion with the distribution of light in spectra of different orders.
It is well to make several plates of different focal lengths. That they
have properties similar to lenses may bhe well shown by holding one of
suitable focus, say half a metre, between the eye and a distant lamp.
If the central zone is brought over the flame, the whole plate fills up
with light like a lens. By combining a zone-plate with a low-power
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eye-piece we can form a telescope which will give a fairly sharp
image of a brilliant object, such as an incandescent lamp.
- Lord Rayleigh, in his article on Wave-Theory in the Encyclopedia
Britannica, called attention to the fact that if it were possible to
provide that the light stopped by the alternate zones could be al-
lowed to pass, but with a reversal of phase, a four fold intensity in the
illumination at the focus would result. In this case the secondary
disturbances frdm all the zones, both odd and even, would reach the
 point in the same phase. This can be accomplished in two ways,!
first by making the zones of a thin film of gelatine on glass, the thick-
ness of the film being such as to retard the waves one-half wave-
length. These were made by coating a glass plate with a thin
film of gelatine containing a little bichromate of potash. Con-
tact prints are made from the reduced photographs in sun-
light, and washed for a few seconds in warm water. Still
better plates have been recently made by the author by etch-
ing glass with hydrofluoric acid. The glass plate was coated with
a thin film of wax, and mounted on a small turn-table revolved by
a motor. The ruling needle was advanced by a dividing engine,
and circles cut through the wax, the proper radii being secured by
observing a photograph of Newton’s rings through a microscope
provided with a cross-hair, which was carried along with the ruling
point. After etching the plate with the acid the wax is removed.
Casts of these plates can easily be made in celluloid. Another
method is to form the zones of metallic silver on the hypothenuse
surface of a right-angle prism. In this case the light from the odd
zones is reflected metallically from the silver, while that coming from
the even zones has been reflected from the air surface (total internal
reflection). Reflection under these two conditions introduces a
phase change of almost exactly a half wave-length, and the light at
the focus is quite as brilliant as with the gelatine plates.

The zone-plate has many peculiar properties. 1t has multiple foci
and can act at the same time both as a convex lens and a concave
lens ; but these properties can be discussed to better advantage after
we have studied diffraction.

Huygens’s Principle as applied to Solitary Waves. — Objections
have been raised from time to time as to the general applicability of
Huygens’s principle. For example, it is well known that a wave-
disturbance, consisting of simply a ‘‘crest,” unaccompanied by a
‘‘ trough,’’ is capable of propagation under certain conditions. Since
rectilinear propagation depends upon interference, and as we can
have no destructive interference between disturbances in which the
displacements are all in one direction, it would seem as if the prin-
ciple could not be applied in this case. Gouy has shown, in the
paper previously alluded to, that we can have only plane-waves of
this type : a spherical wave, even if started by a disturbance consist-
ing of half an undulation, will develop the other part as soon as it
breaks away, so to speak, from the source. This is proven for waves
of sound: we cannot have a spherical sound wave which travels
out as a condensation, even if we start it by the sudden expansion of

1 Wood, ‘“ Phase Reversal Zone-Plates,” Phil. Mag., June, 1898.
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a small sphere unaccompanied by a contraction of the sphere. The
wave will go out as a condensation followed by a rarefaction. Since
our secondary wavelets are spherical in form, the same holds true
for them. This peculiarity of spherical waves was shown by Stokes
some time before the appearance of Gouy’s paper, and is referred
to by the author.

There appears also to be a feeling that Huygens’s principle cannot
be applied to a solitary wave. There certainly can be no inter-
ference between secondary wavelets which do not pass simultane-
ously through the given point, and the points on the wave front,
from which the wavelets start, lie at different distances from the
point in front of the wave at which we are determining the illumi-
nation.

We can form an idea of how the interference takes place in the
case of a solitary wave in the following way.

Consider three points a, b, ¢, on the wave front each half a wave-
length farther away from the exterior point than its neighbor.
The crest of the wavelet from the middle point b will reach the ex-
terior point at the same moment as the trough from a, and will be
destroyed by it; the trough from b will, however, be destroyed by
the crest from c; in other words the disturbance from b is destroyed
in part by a disturbance from a, and in part by one from ¢. Another
way of looking at the matter is to make use of the method of resolu-
tion employed by Stokes in his paper upon the nature of X-rays.
In Fig. 143, we have a plane-wave with its crest represented by a
dotted line, and its trough by a solid line, and we have to determine
the portion of the wave effective in illuminating the pomt X. De-
scribe around X spheres (circles in the diagram) of radii a, a’, a”, also
larger spheres of radii b, b’, b’’. It is clear that disturbances ongmat-
ing on the surface of any one of these spheres will pass simultane-
ously through X, since X is equidistant from every point on the
surface of a given sphere. Disturbances on the solid and dotted line
are of opposite sign and will destroy each other if they pass simul-
taneously through X. In the case of the spheres which cut the pole
of the wave, the positive and negative disturbances pass through X
in succession, and there is no destructive interference. In the case
of disturbances from more remote parts of the wave, we have a
positive disturbance from C and a negative one from B reaching X
simultaneously and destroying each other, and the same for points
D and E. We shall make use of this method again when we come to
the subject of diffraction, in explaining the relation between the
magnitude of diffraction and the wave-length. It is clear that the
shorter the wave, 1.e. the smaller the distance between the two lines,
the more nearly is the effect at X due to a small region around the
pole of the wave. The pole is intercepted by a screen in the figure.

Law of Regular Reflection deduced from the Principle of Inter-
ference of Elementary Waves. — The construction given by Huy-
gens for the reflected and refracted waves is incomplete, just as was
his construction for rectilinear propagation, for he was obliged to
assume that only a single point on the secondary wavelet was opera-
tive in producing illumination. In applying the Fresnel principle of
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interference to reflection from a plane surface, we regard each point
on the surface of the mirror, as it is struck by the incident wave, as
the centre of a secondary wavelet, and determine the collective
effect of these wavelets at any point, just as we did when we re-
garded points on the wave-front as centres of disturbance. We
know that the light, radiating from a point and reflected from a
plane mirror, which is effective in illuminating a given point, comes
from a point on the mirror so situated that lines joining it with the
source of the light and the point illuminated, make equal angles
with the normal. Let us see if we can construct a system of zones
on the surface of the mirror in such a way that the effects coming
from all will be essentially reduced to that due to a small area sur-
rounding a point situated as described. The problem is somewhat
more complicated than the one which we have just solved, for the
centres of the secondary wavelets on the surface of the mirror are
not vibrating in unison as are those on the wave-front. The reason
of this is obvious, for different points on the mirror are struck by
the wave-front at different times, and the secondary disturbances
therefore do not start simultaneously, and will not be in agreement
of phase except in the case of a plane-wave incident normally.

The calculation of the zone-system on a reflecting surface is
rather tedious, and does not teach us very much. It will be found
in the earlier edition of this book, where it is shown that the zones
are ellipses, their eccentricity varying with the angle of incidence.
At normal incidence the ellipses become circles.

The areas of the ellipses can be shown to be very nearly equal,
forming a decreasing series similar to the circular zones on the plane-
wave front. If we describe such a series of ellipses on a flat mirror
and make the alternate zones opaque, the flat surface will concen-
trate parallel rays incident at the proper angle, much like a concave
mirror. Such a plate can be made by photographing our drawing
of the circular zone system at an angle of 45°. The negative when
placed on a piece of silvered glass gives very sharp focal images for
light incident at the same angle. If the elliptical zone system is
printed on the hypotenuse surface of a right-angle prism, in metallic
silver, our phase difference of half a period between the adjacent
zone results from the reflection occurring under different conditions.
Such prints can be made by a method given in the paper referred to
in the previous section.

Reflection and Refraction by Unpolished Surfaces. — One of the
most interesting and instructive applications of the Fresnel con-
struction is to the diffuse reflection and refraction which occur when
light strikes unpolished or matt surfaces, such as paper, plaster of
Paris, or ground glass. We have explained regular reflection by
showing that there is destructive interference between the wavelets
arriving at any point from the surface of the mirror, and that the
illumination is practically due to disturbances coming from a small
region surrounding the point so situated that straight lines joining -
it to the source of light and the illuminated point make equal angles
with the normal. An unpolished surface destroys all phase relation
between the elements on the wave-front. The secondary wavelets
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start from the elevated portions of the surface first, since these
portions are struck first by the incident wave, and the reflected
wave-front, instead of bemg plane, is pitted and corrugated in an
irregular manner. It is impossible to arrange any zone system on
such a surface, for there are all possible phase differences irregularly
distributed over the reflected wave-front, consequently each point
on the surface acts as an independent lummous source, sending
light out in all directions. We can apply the Fresnel theory to
reflection of this sort in the following way.

Suppose we have a plane surface X Y (Fig. 27) and a luminous
point S, and are considering the effect at P, which we will suppose
to be the point to which a ray SA would be reflected. We have,

L

X \,{ Y ' A
Fia. 27.

however, at A an elevation of height H, and the secondary wavelet
will leave the point B sooner than it would have left the point A
were the elevation absent. We can see that the effect at P will be
the same in either event, provided the difference between the path
SBP and SAP is small in comparison to the wave-length. At
normal incidence it is obvious that this path difference will be 2 H,
therefore a surface having elevations on it of such magnitude that
twice their height is not small in comparison to the wave-length
will not reflect regularly at normal incidence. With a given rough-
ness long waves may be regularly reflected, and short waves irregu-
larly. It can be seen from the right-hand figure that the difference
of path becomes less as the angle of incidence increases, being in
the case figured BA — B K, which is léss than H, and that at grazing
incidence it will become 0. It can be shown geometrically that the
path difference is represented for all incidences by 2 H cos ¢, the value
of which must not exceed a small fraction of a wave-length if regular
reflection is to occur.

SB=SA-AB=8S4--H_

COS1
and BP=AP+BK=AP+ABcos (r—2i)=AP— ézl;cos%,
SA+AP—-(SB+BP)= -—}—I—,(l+cos 21)=2H cosz.

COSs1

Since the path difference decreases as the angle of incidence increases,
itis obvxous that for a given roughness we shall get regular reflection
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when the incidence angle is so great that pA = 2 H cosine 7, where p
is a small fraction; therefore if we gradually increase the incidence
angle, the long waves will be reflected first, and then the shorter.
Smoked glass, which at perpendicular incidence will show no image
of a lamp at all, will at nearly grazing incidence give an image of
surprising distinctness, which is at first reddish, becoming white as
the angle increases.

Let .us next consider the effect of a matt surface on refraction.
Here the phase differences are due to retardations of the portions
of the wave-front encountering the elevations, on those portions

encountering the depressions. With a given
s degree of roughness the retardation will be
greater when the substance has a high re-
fractive index, or more accurately when the
difference between the refractive indices of
the media bounding the rough surface is large.
When the retardation between two adjacent
paths is larger than a small fraction of a wave-
length, we have diffuse transmission. If we
take a sheet of ground glass and wet the sur-
face, the glass transmits more direct light than
it did before, since we have lessened the dif-
ference between the refractive indices of the
Fro. 28. bounding media. If we substitute benzole
for water the glass becomes still more trans-
parent, and by bringing up the refractive index of the benzole by an
addition of Canada balsam, we can cause the ground surface to
disappear entirely.

Let us now examine the effect of the angle of incidence on the
transmission (Fig. 28).

The path difference expressed in time between two disturbances
travelling over the paths SAP and SBP can be found as follows.
The time occupied over the route SAP (which would be the one
followed were there no elevation on the surface) will, if v and v be

the velocity of propagation in the upper and lower media, be STA +

“t,P, while the time over SBP or via the elevation will be SvB + Iff
and the difference in time will be the difference bétween these two
quantities.

The regularity of the transmission will not be affected if this time

difference

v v’ v v’

SA n AP (SB n BP)
is small in comparison to the time of a complete vibration. To
change this time difference into a path difference, we substitute for

% the quantity n, which is the relative refractive index between the
v

two media, which gives SA +nAP— (SB +nBP).
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If this quantity is small in comparison to the wave-length, the
regularity of the transmission will be unaffected.
This path difference can be shown to be

ni—1
H . . * .,
Vn?—sin:t +cos?

where H is the height of the elevation and + the angle of incidence.
This quantity has its smallest value when ¢ = 0, when the path
difference becomes H(n—1), or the regularity of transmission de-
creases as the angle of incidence increases, the opposite of what we
found in the case of reflection.

If the refractive index of the substance is 1.5, then H(1.5—1) or
H /2 must be small in comparison to the wave-length of light, if
the light is to be regularly transmitted at perpendicular incidence.
Inequalities can then exist, the heights of which are, say, not greater
than } A, which is four times as great a discrepancy as we could have
on a reflecting surface.

Summing up, we have (for perpendicular incidence) for regular
reflection, 2 H=pA and for transmission H/2=pA.

If we procure a piece of ground glass, which will barely show the
outline of a lamp flame by transmitted light, and thinly silver a
portion of the ground surface, we shall have a reflecting and trans-
mitting surface of the same degree of roughness. It will be found
that b reflected light the outline of the flame is indistinguishable.
Ground glass of this description may be made by grinding two pieces
of ordinary ground glass together, with fine emery and water, the
process being the first stage of polishing.

We thus see that a rough surface may regularly reflect the long
waves while diffusing the shorter ones. Lord Rayleigh has make
some interesting experiments upon the reflection of heat waves
from ground-glass surfaces too rough to give any trace of regular
reflection with visible light. The ground surface was silvered and
the radiations of a Welsbach lamp reflected from it. In some cases
two reflecting surfaces were used. It was found that the radia-
tion, freed by the process from the shorter waves, was reflected
almost as well by a third ground and silvered surface as by a
polished silver mirror. The method is analogous to that origi-
nated by Rubens and Nichols for isolating long heat waves by re-
peated reflection from quartz or rock-salt surfaces.

A paper by Lord Rayleigh on “ Polish”’ in the Philosophical
Magazine will be found of interest.



CHAPTER III

THE REFLECTION OF LIGHT FROM PLANE AND
CURVED SURFACES

WHEN light strikes the boundary surface separating two media of
different optical densities, some of the energy is reflected back into
the first medium, and some crosses the boundary and is transmitted
through, or absorbed by, the second medium. We have shown in
the previous chapter that if the surface is smooth to within one-
eighth (}) of a wave-length, we shall have regular reflection, and the
law of reflection from a plane-mirror has been demonstrated by the
Fresnel theory of destructive interference.

As a matter of fact, we are practically unable to make a surface
so perfect that absolutely no light is diffused. Admit a ray of
sunlight into a dark room and reflect it from the most perfect mirror
attainable ; were diffuse reflection not present the mirror itself would
be invisible, which is never the case. The percentage of diffused
light decreases as the angle of incidence increases, as has been shown
in the previous chapter, regular reflection taking place even on matt
surfaces at grazing incidence.

In studying the reflection of light from plane and curved surfaces
we shall investigate not only the direc-
tion of the reflected rays, but also the form
of the reflected wave-fronts.

Reflection of a Plane-Wave from a
Plane-Mirror. — Here the incident rays
are parallel to one another and normal to
the wave-front. We have seen that the
reflected wave-front will be the surface
enveloping the secondary wavelets given
off by the various points on the mirror's
surface as they are struck in succession by
the incident wave. The general method

- of constructing the reflected wave-front is
Fia. 29. shown in Fig. 29. Let A B’ be the surface

of the mirror, and A B the incident-wave

front, the rays being indicated by lines. At the moment figured, a
secondary disturbance is about to leave the point A. This second-
ary disturbance will have spread out all around 4, to a distance equal
to BB’ at the moment when the point B on the wave-front en-
counters the surface. The secondary wavelets from points C, D, E,
etc., intermediate between 4 and B’, will have lesser radii. To
construct them draw A’'B’ parallel to AB. This will give us a
subsequent position of the wave-front, assuming the mirror not

46
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preseni. Join these two wave-fronts by perpendicular lines, which
represent rays, which cut the mirror’s surface at C, D, E, ete. The
wavelet around C must obviously have a radius equal to CC’, while
that around D has a smaller radius, DD’, and so on for all the other
points. If we describe these spheres (cu'cles in the diagram) we
shall find that they are enveloped by a plane surface, which makes
the same angle with the mirror’s surface as the mcldent wave.
This can be proven by similar trlangles Rt. triangle ABB’ = Rt.
triangle AFB’ = Rt. trlan le AB'A’. (Hypotenuse in common
and AF = BB’ = AA’ by constructlon ) Therefore, their homolo-
gous angles are equal. The rays being normal to the wave-front
will make equal angles with the normal to the surface of the mirror.

We can apply this same method to the construction of the wave-
front after reflection from a surface of any form. In brief, we draw
the wave-front before it encounters the reflecting surface and also in
some subsequent position, behind the mirror, which it would occupy
at a later moment were the mirror not present. Join these two
fronts by normal lines (rays) and describe around the points at
which they cut the reflecting surface circles whose radii are equal
to the respective distances of the points from the wave-front in its
second or imaginary position. The envelope of
these circles shows us the position of the reflected
wave-front, at the time at which the incident
wave would have reached its imaginary position
were the mirror absent.

Let us now apply this method to the construc-
tion of the reflected wave-front, when a spherical
wave encounters a plane-mirror. Let O be the cees
luminous point around which we construct the = g 39
circular section of the spherical wave intersecting o
the mirror at A and B (Fig. 30). Completing the wave-front below
the surface of the mirror, describe around
points on the mirror’s surface circles whose
radii are equal to their distances from the
wave-front below the mirror measured in a
normal direction, — that is, along the rays or
radii of the original wave. The envelope of
these circles is itself a circle of the same ra-
dius as the original wave, with its centre of
curvature at the same distance below the
mirror as the luminous point is above. The
reflected wave is thus a portion of a sphere

Fio. 31. with its centre below the mirror. This can
be proven as follows:

Draw OO0’ perpendicular to the mirror’s surface (Fig. 31), making
OM = O'M, and with O’ as a centre draw the arc AN B representing
the reflected wave-front. Draw rays OPQ and O'PQ. O'P =
OP (homologous sides of equal Rt. triangles), .. PQ’ = PQ, since
O'Q = 0Q (radii of equal circles).

This shows us that a wavelet drawn around P with a radius PQ
touches the spherical arc A NB at @', and since this is true for all
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at F. If a wave is started at F and reflected in the convex surface
of the same branch of the hyberbola (the branch nearer F ms
removed), it will be tra.nsformed into a sphere expanding from F
as a centre.

F1a. 36.

If now we consider a spherical wave front contracting towards
the focus F' (i.e. reversing the last case) it will, after reflection,
converge towards F. In other words, the convergence of the rays
will be decreased without interfering with their ability to come to
a focus at a point. This is important in connection with the use of
hyperboloidal mirrors in modern reflecting telescopes.

Reflecting Telescopes. — A concave paraboloid of glass sil-
vered on its curved surface forms the objective of the reflecting
telescope. The image is sharpest when it falls upon the axis of
the paraboloid. Newton, who constructed the first reflecting
telescope, placed a small mirror on the axis between the objective
and the image (near the latter), which reflected the rays out
through tbe gide of the tube, where the image was viewed with an
eye-piece. Telescopes of this form are called Newtonian reflectors.
The mirror, however, obstructs some of the incident light, and
Herschel accordingly inclined his mirror so that the image fell at
the side of the tube. This produces a little distortion, however,
though it is small if the inclination is not more than two or three
degrees. If we could make a paraboloid in which a portion of
the true surface a little to one side of the axis was used, the mirror
when properly oriented would give an image free from distortion in
an oblique direction. See section on Focal lines. This could be
accomplished by local corrections of the surface. In practice it
i8 found that the definition of the Herschel reflector is best with
the mirror in a certain position, which can be found by rotating it
in its own plane. In this position we have the nearest approxi-
mation to the ideal condition mentioned above. The circumstance
results from slight irregularities in the curvature. The largest
modern reﬂector in the world is the monster instrument of the
Mount Wilson Solar Observatory in California. The parabolic
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sidered, but envelope a surface known as the Caustic. An example
of a caustic is the cusped line of illumination seen on the table-
cloth when the light of a lamp strikes the inner surface of a silver
napkin ring. We have seen that a concave paraboloid brings paral-
lel rays accurately to a focus. A concave spherical mirror does not
do this. Rays near the axis come to a focus approximately at a
point, but as we recede from the axis we soon find the reflected rays
falling wide of the focus. This effect is known as Spherical Aberra-
tion. In constructing telescope mirrors, opticians strive to give the
surface as nearly as possible the figure of a paraboloid. The nature
of the wave-front in cases where caustics are formed is not at once
apparent. The subject is usually treated by ray methods, and we
shall accordingly begin by considering one or two examples
metrically, although the evolution of the wave-front, and the rela-
tion between the wave-front and the caustic, form a more inter-
esting study.

Reflection from Convex Spherical Surfaces. — In studying re-
flection by ray methods we can regard a curved surface as made up
of an infinite number of plane surfaces, for each one of which the
law of equal angles holds. Let us take as the first case the reflec-
tion of light radiating from a luminous point at a convex spherical
mirror.

When the light is incident on a small portion of a sphere in a
nearly normal direction, we may regard the reflected rays as ema-
nating from a point behind the mirror; the virtual focus, as will
appear presently, is not at once apparent. If, however, we employ
a large arc of the mirror this does not hold even approximately, and
we require an expression for the position of this focus in terms of
the angle of incidence.

Let the radius of curvature of the mirror be r, the distance of
the radiating point from the centre of curvature be b, and the angle
of incidence be ¢; find g, the distance of the focus D from the centre.

Y

bl R e et

g

Fic. 40.

(1) g :r=s8in P :sin 6 (Sides of A in ratio of sines of opp. &£).
b:r=s8inX:sinY.
. .2 g gingsinY PPN ¥ g X is th i
Dnndmgb sinosinxandpmcﬁ sz(smce is the sup
plement of ®).
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g_sinY _sin(G—$) . . Y+B+X=X+iand

b sinf sin(t+p) sind=sin (8 + ¢) =sin (8 +1).
g _sintcosB—cosisinfB,

b sinicosB+costsinf

Adding 1 to both sides,
g+b _ sinicos B—costsin B+sin ¢ cos B+cosisin B

b sin ¢ cos 8+ cos ¢ sin 8 ’
g+b _ 2sinicos B ¢ sint __sin¢g g bv (1)) :
b sin z+8) ’ , bu sin (1+8) siné r( y (D)
. g+b_2gcosB . g+b _ 2bcosBor +1= 2bcosf,
b r g r g r
br :
L= tion f
] 3boos B—r’ the equation for & CONVEX MIRROR.
Considering D as the luminous point, and solving for b, we get
b= r , the equation for a CONCAVE MIRROR.
2gcosb—r

These equations show us that the rays reflected from different
annular elements of the sphere (determined by B) if produced
backwards cut the axis of the mirror nearer and nearer to its sur-
face as B is increased.

For rays near the axis (8=0 and cos 8=1) we have

M o
2b—r

If the source is at a great distance, t.e. b very large in eompanson
to r, we have -

g=

g=

NI

that is, the focus is midway between the surface and the centre of
curvature. If we construct a number of reflected rays we shall
find that they envelop a caustic surface, which is virtual in the
case of a convex spherical mirror and real in the case of a concave.
We cannot therefore form a clear image with a spherical mirror of
large aperture, since the rays do not focus all at the same point;
in other words, the reflected wave is not spherical as in the case of
the ellipsoid and paraboloid.

Reflection of Plane-Waves from Concave Spherical Mirrors. —
Let us now determine what happens to the wave-front in the case
just considered. We might employ the method already used for
constructing reflected fronts, but this method has certa.m disad-
vantages in the present instance: it does not readily give us the
complete wave-front, and it gives but a single front. In this par-
ticular case the reflected front is rather intricate, and a construction
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that will enable us to follow it in its evolution is desirable. This
can be accomplished by employing a second method.

ABC is the mirror, AOC the plane-wave (Fig. 41). Around
points on ABC as centres describe circles tangent to the wave.
These circles will be enveloped by another surface, A DE, below the
mirror (the orthogonal surface). If we erect normals on this sur-

,. /S

;—‘
&

Fia. 41.

face, we have the reflected rays, and if we measure off equal dis-
tances on the normals, we have the reflected wave-front. By draw-
ing the orthogonal surface we avoid the complication of having to
measure off the distances around a corner. The orthogonal sur-
face is an epicycloid formed by the rolling of a circle of a diameter
equal to the radius of curvature of the mirror on the mirror’s sur-
face, and the normals can be erected by drawing the arc FG (the
path of the centre of the generating circle), and describing circles
of diameter BE around various points on it. A line joining the
point of intersection of one of these circles with the epicycloid, and
the point of tangency with the mirror, will, when produced, give a re-
flected ray; for example, J K produced, for circle described around
H. This construction once prepared, the series of wave-front pic-
tures can be very quickly made. Three or four sheets of paper are
laid under the construction and holes punched through the pile by
means of a pin, at equal distances along each ray (measured from

orthogonal surface).
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These are diagrams taken at intervals on a kinetoscope film pre-
by the author for illustrating the wave evolutions.

About one hundred constructions were made, in the manner just
described, and photographed in succession on the film, which, when
run through the machine, gives us the moving wave on the screen
in a most graphic manner.!

A series of photographs of a sound-wave entering a hemicylin-
drical mirror ? is shown in Fig. 43, and it will be seen that the forms
are identical with the geometrical constructions. The reflected
front is cusped, and in certain stages (No. 4) has a form not unlike
a volcanic cone with a bowl-shaped crater.

In Fig. 44 we have a number of wave-fronts in different stages of
reflection, and it is at once ap-
parent that the cusp traces the
caustic surface, indicated by a
dotted line.

This gives us at once a
physical, as distinguished from
a geomeirical, definition of a Fra. 44.
caustic, which is a surface
traced by a moving cusp of the wave-front. .

Let us examine a little more carefully the manner in which this
cusped wave is propagated. A superficial examination of the forms
might lead one to imagine that the bowl of the crater collapsed to
a point at the principal focus of the mirror. This can of course only
be true in the case of a concave spherical wave, which is only given
by a parabolic mirror. We shall find as a matter of fact, if we ex-
amine the geometrical construction, that the cusp of the wave, or
the rim of the crater, which traces the (I:aus:i:: as wl%?at\"lf seen, i8
continuously passing thro a focus. In other words, the curva-
ture of the crater increasesuig we go from the bottom to the rim, at
which point the radius becomes zero. The inner edge is then con-
tinually passing through a focus and appearing on the outside,
building up, as it were, the sides of the cone. These wave-fronts
were wn by constructing the orthogonal surface, which was
shown to be, in section, an epicycloid formed by rolling a circle,
whose diameter was equal to the radius of curvature of the mirror,
around the outside of the mirror. The evolute of this curve is the
caustic, itself an epicycloid, and the reflected wave-fronts form a
family of parallel curves, which are the involutes of the caustic.

Though the caustic and orthogonal surface (evolute and involute)
are similar epicycloids, the reflected wave-fronts, or parallels to the
orthogonal surface, are not epicycloids. It may be well to point out
here an error that sometimes appears in text-books on Optics,
namely, the assumption that the wave-front (say in the case of a
spherical wave refracted at a plane surface) is an hyperboloid in Qhe
second medium, because the caustic is the evolute of an hyperboloid.

.

I Photography of Sound-Waves, and Kinematogg-aphic Demonstration of Re-
flocted W.ve-lg'ontu." Wood, Proceedings Royal Society, Vol. 66. ]

8 Cylindrical surfaces have been used instead of spherical for obvious reasons.
The sectional view is of course the same in each case.
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An hyperboloid wave will not propagate itself as an hyperboloid,

nor an ellipsoidal wave as an ellipsoid (except in an anisotropic

medium), the parallels to a conic being in general curves of the

eighth degree. In the case above cited, we should speak of the
wave-fronts after refraction as the parallels to an hyperboloid.

Let us suppose the wave to be just entering the mirror. The form

of the portion which has already suffered reflection is a cusp extend-

ing around the upper edge of the hemisphere (Kig. 45). The upper

branch of the cusp is con-

cave upward, and is the

{x;rtitiln of tﬁxe wave Sl;'lfliCh

eft the reflecting ace

Have Front and has passed through a

focus. The lower branch

is concave downward, or

in the direction of propa-

gation, and represents the

rtion of the wave which

F1a. 45. as just left the surface

and is on the way to its

focus. The radius of curvature increases from zero as we go away

from the cusp-point along either branch, as has been said before.

This cusped wave moves down the mirror, the lower branch being

continually replenished by consecutive portions of the incident wave

as it encounters the mirror, the upper branch being continually

added to by elements of the lower branch as they pass through their
foci at the cusp.

As has been said, the cusp traces the caustic surface, and since the
wave is always coming to a focus on the cusp, the increased illumi-
nation along the caustic is accounted for.

The difference between a parabolic reflector and a spherical one is
now clear. The former gives us a spherical wave which will col-
lapse to a point, the latter an approximately spherical wave near
the axis only, the rest of the wave being incapable of shrinking to a
point.

We will next consider the opposite case, starting a spherical wave
at the principal focus of the concave, spherical mirror, and determine
the form of the reflected wave,
which we found to be plane in the
case of the paraboloid. We will
use the first method, constructing
a single reflected front only. Let '
A BC be the mirror, with its focus
at D, where the wave originates. AN
Draw dotted lines representing \/ . !

pProececvcccccc T

the wave in a subsequent position N AV
(Fig. 46), and around the points L [Tl
B, F, G, H on the mirror describe e

arcs with radii equal to BE, FH, Fio. 46

and G respectively. These arcs
will be enveloped by the reflected wave-front, which is approxi-
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oblique position and reflecting the light coming from a small, brill-
iant source on a screen placed at various distances from the mirror.
We can best form an idea of how these lines are formed by consider-
ing the question first by a ray method and then by a wave-front
method.

Let A B be the axis of the mirror, near the edge of which a bundle
of rays parallel to the axis falls. Construct the reflected rays from
a linear strip BC as shown in the sectional view (Fig. 51): we shall
have a flat, converging fan coming to a focus at F’, then diverging

and cutting the axis at F’’. Now rotate the whole figure through
several degrees around A B as an

axis ; the parallel sheet of incident _

rays will trace the rectangular in- / )
cident bundle, the line BC will A

trace an approximately rectan-
gular area of the mirror, F’ will
move through a short circular are,
approximately a straight line (the
primary focal line), while the di-
verging fan will trace out wedge-
shaped portions of space on each
side of the axis, which have a
common linear boundary at F’’
(the secondary focal line). The
reflected rays between the two
focal lines fill a space similar in Fro. 51.

shape to the sphenoid of crystal-

lography. If any difficulty is found in forming a picture of this
rotation figure in the mind, it can be removed by cutting out of
cardboard a diagram representing a section of the mirror, incident
and reflected rays as figured above, and mounting it on a knitting
needle placed in coincidence with the axis AB. By rotating the
needle through a small angle, the formation of the focal lines and
the sphenoidal bundles of rays can be readily seen.

If we require a mirror which will form a focal point in an oblique
direction, the portion BC must be cut from a paraboloid surface
the axis of which is AB. This is for parallel rays, and the subject
has already been discussed under reflecting telescopes.

If we require & mirror which will form a focal point in an oblique
direction for rays coming from a source at a small distance, the
mirror must be a portion of an ellipsoid, say the portion at D in
Fig. 54, where A and B are the conjugate foci. Such mirrors would
be very difficult to make, as the curvatures are different along dif-
ferent meridians.

Let us next endeavor to explain the formation of focal lines by
considering the form of the wave-front.

The curvature of the wave-front as it leaves the mirror under
these conditions is different along different meridians. If we cut a
piece out of the side of a hen’s egg we shall have something of

us form.

Let AB be the direction of greatest curvature and CD that of
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least curvature (Fig. 52). To start with, suppose the curvature be
equal along all lines parallel to A B, and suppose all lines parallel to
CD to be straight. This will give us a cylindrical wave which will
come to a linear focus at F, the length of the line being equal to the
length of the cylindrical wave.

Fia. 52.

If we start with a square wave-front we shall find it contracting
to a line as we approach F,, and expanding beyond F}, first as a hori-
zontal rectangle, then a square, and finally a vertlcal rectangle.
Now let us impress a slight curvature parallel to CD. The result
of this will be that our square will now contract in both directions,
only in one less rapidly than in the other, and the line at F; into
which it shrinks will be shorter than before, and instead of being
straight will be slightly concave towards F3. From here it can be
regarded as an expanding wave in a vertical plane, and a contracting
wave in a horizontal plane. It is easily seen that the line at F, will
now open out, first into a horizontal rectangle, as before, then a
square (as the two sides closing tn become equal to the top and hot-
tom moving out), then a vertical rectangle, and finally a vertical line
at F,, as the sides come together.

It is interesting to inquire as to the nature of the re
wave surface between F; and F,. From its nature we see that it

. must be concave towards Fy in the

Axis horizontal plane, and convex in the

vertical, the surface resembling a

small portion cut out from the inside

of a thick cylindrical ring. We can,

indeed, find surfaces of this form on

our geometrically constructed wave-
fronts.

Consider the diagram shown in Fig.
53 (which will be recognized as the
‘ volcanic cone’’ form), remember-
ing that the complete wave-front is
formed by the rotation of this figure
around the axis of the mirror.

The bowl of the crater is concave
along every meridian, but it is at once apparent that any portion of
the outer slope has the required saddle-shape, being concave in
horizontal planes and convex in vertical planes. From this it is
evident that the outer wall of the volcanic cone, before it crosses
the axis of the mirror, always represents the portions of the wave-
front between the primary and secondary focal lines.

That this is true is evident, when we recollect that the first focal
line is formed by the intersection of rays on the caustic surface, or,

Fic. 53.
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regarded from the wave point of view, by the passage through their
foci on the cusp of the wave, of adjacent elements of the wave-front.
The second focal line lies on the axis of the mirror; consequently the
wave-front between the lines is that portion of the surface which has

»d through a focus on the cusp, but which has not crossed the axis.

It will be found that a small glass model of the wave-front, shown
in cross section in Fig. 53, is extremely useful in making the whole
matter clear. It can be made by drawing down a la.rge thin tube,
melting the end down flat, and then sucking it in a little.

Fermat s Principle. — We sometimes find it stated that a ray of
light in passing from one point to another by way of either a reﬁect-
ing or refracting surface, chooses a path such that the time of transit
is a minimum. This principle was stated by Fermat more than two
centuries ago. It is true, however, only for plane surfaces. In the
case of reflection from a plane surface the incident and reflected rays
make equal angles with the normal, and we know from elementary
geometry that this path is the shortest that can be traced from one
point to the other by way of the surface. The same is true for
convex surfaces, but for concave surfaces we find that in certain
cases the path is a maximum instead of a minimum.

That the path is sometimes a maximum can be seen by the con-
struction shown in Fig. 54. We will consider the passage of a ray
from the point A to the point
B by way of the reflecting
spherical surfaces CDE and
FGH. Around the points A
and B as foci we construct an
ellipse which we will suppose
to be tangent to the two re-
flecting surfaces at D and G.
This ellipse is an aplanatic
surface for rays issuing from
either focus, consequently
the time of transit of a ray
from one focus to the other Fia. 54.
by way of the elliptical sur-
face is the same for every point on the surface. Now the ellipse and
the two spherical surfaces have common tangent planes at D and G,
oonsequentl D and G will be the points on the spherical mirrors so °
oriented that they can reflect rays from A to B. It is easy to sce
that the path AG’B is shorter than any other path between 4 and B
by way of the sphere which is exterior to the elhpse, while in the case
of the other sphere the path actually pursued (A DB) is longer than
any other path which we can draw from A to the surface and from
thence to B In this case we see that the path chosen by the ray is
such as to make the time of transit a maximum. The conditions for
a maximum or minimum may be expressed by saying that the varia-
tion of the time of transit w1th the change of path, ceases at the

lnts for which the path is either a maximum or minimum, or

(AD+ DB)=0. Thls matter will be further discussed under re-

fraction.




CHAPTER 1V
REFRACTION OF LIGHT

IN the preceding chapter we have discussed the forms and behavior
of the wave-fronts reflected back into the first medium, when light
falls upon the boundary between two media of different optical
density. A portion of the energy, however, always passes into the
second medium, except, perhaps, in the specia.l case of total reflec-
tion, and even in this case mathematical analysis shows us that
there is a disturbance beyond the boundary, though only penetrating
to a distance of a few wave-lengths. The energy crossing the bound-
ary may either be absorbed by the second medium, or propagated
according to the laws governing luminous disturbances in it.

In the present chapter we shall consider only the case of wave
propagation in an isotropic medium, or one in which the velocity of
propagation is independent of direction. Later on we shall inves-
tigate the refraction of light in bodies in which the velocity is differ-
ent in different directions.

We will begin by considering the refraction of a plane-wave at a
plane surface.

Refraction of Plane-wave at Plane Surface. — Suppose a plane-
wave incident at an angle of 45° on a flat surface of glass, and as-
sume the velocity in the glass to be less than the velocity in air, as
we shall subsequently show it to be.

The various points on the glass surface become in succession cen-
tres of secondary disturbances as they are struck by the incident

wave. These secondary wave-

8 lets spread out in both media,

and it has been shown by Huy-

f/ gens’s construction that the re-
/ flected wave is the envelope of
. . those spreading out in the first

medium. If we apply the same

construction to the second me-

dium, supposing for the sake of

Fia. 85. simplicity that the velocity of

the wave propagation in it is

only one half as great as in the first, the wavelets in the glass will

have radii half as large as the corresponding wavelets in air, and the

enveloping surface or refracted wave-front is turned through an

angle (Fig. 55). The rays, or normals of the wave, are therefore
bent an equal amount.

It was determined in 1621 by Snell that in every case of refrac-
tion the incident and refracted rays make such angles with the
normal to the surface, that the ratio of their sines is constant for

64
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any two given media. Snell’s law of refraction we now know holds
only for isotropic media. It can be easily deduced from Huygens’s
construction in the following way.

Construction. — The angle of incidence ¢ is the angle between the
incident ray and the normal to the surface. It is also the angle
between the wave-front and the surface. The same is true for the
angle of refraction. Let the velocity in air be v, and the velocity in

glass be v’ (equa.l to say %), and let ¢ equal the time required for the

wave in air to traverse the distance BB’ (Fig. 51). Then BB’'=1t,
and the radius of the secondary disturbance around A in the glass

. , BB’ BB _ . . L AA'_ .
will be A4’ or > We havethenAB, sin ¢ and Y T

v . .
or oy AA o constant, in this case 2.
This constant is the relative refractive index between the media, and
the above relation holds for every value of ¢, if the second medium is
the one in which the disturbance travels at a lesser velocity. The
refractive index is usually designated by u, and in the above case is
of course 2, which is higher than is usually the case.

Total Reflection. — We have seen that in passing from a rare to a
denser medium a refracted ray always exists, no matter how great
the angle of incidence. This is not true if we reverse the condi-
tions, for now the relative
refractive index will be
less than one, and we shall
find that, if t exceeds a cer-
tain value, sin r is greater
than one. But no angle
has a sine greater than
one, therefore there can be —
no refracted ray. Let us
apply Huygens’s construc-
tion to the case. The
secondary waves in the

first medium, since their e

velocity of propagation is d

greater. By dividing the Fia. 56.

radii of the reflected wave-

lets by 4, we obtain the dimensions of the refracted wavelets. We

shall find that, up to a certain value of ¢, these secondary disturb-

ances will intersect the surface within the projection of the incident

wave upon it; in other words, a tangent plane can be drawn from

the point B’ (Fig. 52). At a certain value of 7, however, the second-

:ﬁmvelet around A will intersect the surface at B’, and the same
ill be true for all of the other wavelets: (since, if the short leg of
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one of the right triangles divided by u gives us the hypotenuse, the
same will be true of all the other similar right triangles). The
tangent plane drawn from B’ to these wavelets will be normal to
the surface, and will touch the wavelets in a single point only (in
the sectional diagram). The refracted ray therefore will travel
along the surface.

The value of ¢ for which this condition exists can be found by
AC with — AC
AB p
course being the refractive index of the rarer medium with respect to
the denser. If, as is customary, we consider u as the refractive index
of the denser with respect to the rarer the last equation becomes

combining sin 1 = = = A B, which gives us sin 1=g, p of

sin1=
I

The angle determined by the above expression is known as the
Critical Angle. If it be exceeded, the secondary wavelets cut the
surface beyond the point B’ and no tangent plane can be drawn,
therefore no refracted ray exists. The energy in this case is totally
reflected.

If in the formula s.1_n3 = p we assign various values to ¢, and solve

sin r
for r, we shall find that every possible value of ¢ between 0° and 90°
gives a corresponding value of r if u is greater than one, which is al-
ways the case when the ray passes from a rare into a denser medium.

Take the case of rays of light entering the
level surface of a pond, at all possnble inci-
e dences from 0° to 90°. The zenith light

o N1 f 4" passes straight down, the horizon light is re-
-on oo REER R "d" e e o
fracted in a direction given by sin 90° _ 1.33,
sinr
1 * L]
Fia. 57. or sinr= 133’ which gives for r a value

slightly greater than 48°. In other words, no ray in the water
makes an angle with the normal greater than about 48°. The light
therefore which enters an eye under water consists of rays embraced
by a cone of 96° angular aperture (Fig. 57) instead of 180°, as is
the case when the eye in air is directed
towards the zenith. If therefore, when
submerged in water, the eye be directed
towards the surface, the sky appears com-
pressed into a circle of light subtending
an angle of 96°, the appearance being
preciqoly as if the water were covered

FIG 38,

dlrectlv overhead. If, however we are
in dlvmg armor, and look u ward through the plate glass window
of the helmet, the illusion of the hole vanmhes for now the ho-
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rizon rays are refracted back into their original direction on pass-
ing into air once more, as is shown in Fig. 58, the 96° cone

widening out to 180°.
In this connection it is of interest to ascertain how the external

world appears to a fish below the surface of smooth water. The
objects surrounding or overhanging the pond must all appear
wnthm the circle of light previously alluded to. There must be a
great deal of distortion of objects which are not very nearly over-
head, but we can gain absolutely no idea of their appearance by
opening the eyes under water, since the lens of the human eye is
only adapted to vision in air, and when submerged is quite unable
to dmtmgmsh the shape of ob] ects. .There is, however, no diffi-
culty in photographing the circular window of light and the ex-
ternal world as seen through it: It was found after a little ex-
perimenting that better results were obtained with a pin-hole than
with a lens, and a small camera was constructed which could be
filled with water and pointed in any direction. If pointed vertically
it recorded the view seen by a fish in a pond; if horizontally, the view
as seen by a fish looking out through the side of an aquarium. It
is obvious that the plate must be immersed in water, as otherwise
refraction occurs as in the helmet of diving armor.

The fish-eye camera can be made of a wooden or metal box meas-
uring about 1212 X5 cms. (inside measure). A hole 3 cms. in di-
ameter is bored through the centre of one of the sides, over which is
cemented a piece of mirror glass with the silvered and varnished
side facing the interior. The glass must be quite opaque, 7.e. free
from pin-holes in the silvered film. A very small hole should be
made through the film by scratching it carefully with a needle,
before the plate is cemented to the box. This small aperture
passes the rays of light which form the image to the photographic
plate which lies against the opposite side of the box. The box
must be light-tight, and filled with clean water. A little considera-
tion will show that the part played by the water in the pond is, in
this case, played by the glass plate. A number of views secured
with the apparatus are reproduced below, Fig. 59. The camera
obviously has an aperture of 180°.

One of the views is of a railroad bridge passing overhead, the
other represents the appearance of a crowd of men standing around
a pond, to a fish below the surface. The two lower views were
taken with the camera pointing in the horizontal direction, 7.e.
the views correspond to what a fish sees when looking out through
the side of an aquarium. One of them shows a view looking both
up and down a street, the other a row of men standing in a straight
line taken from a point only 50 cms. in front of the central figure.
These last two show in a very effective manner that the angle of
view embraces 180°.

Effect of Refraction on the Width of the Beam. — It is at once
apparent, by reference to the diagrams for the construction of
the refracted wave-fronts, that the width of the beam is increased
in a direction parallel to the plane of incidence, when the rays pass
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rays reaching the eye, it will not be changed by the interposition of
a thick plate, at any angle. We can test this by viewing a very dis-
tant object through a thick piece of plate glass and turning the plate
rapidly around a vertical axis to the right and left. Objects near
the plate, however, will be found to shift their apparent position
considerably as the plate is turned. If the two objects and the eye
be in the same straight line it may seem at first sight as if the inter-
vention of the oblique plate would in no way affect their apparent
positions, for parallel rays from the distant object are unchanged in
- direction by passage through the plate, and the same is true of the
rays from the near object. If, however, we remember that the ray
is shifted laterally, the difficulty disappears, for the lateral shift,
while it does not alter the apparent position of an object at infinity,
displaces an object situated at a finite distance. This will be made
clear by reference to Fig. 60.

Let A be a point not far from the plate. Itis A A
seen by an eye at £ by means of the rays pur- '
smn§ the path ABCE, and its apparent position
is A". If the oblique plate be removed, the
point A will be seen by the direct pencil of
m{; AE, and will appear in its true position A.

we make the same construction for parallel
rays ocoming from a distant point we shall
find that the apparent position, or the direction
from which the rays by which it is seen come,
is unchanged.

The Opthalmometer. — This principle ismade
use of in the opthalmometer, an instrument de-
vised by Helmholtz for determining the curvature of the lens of
the eye, by measuring the diameter of the image of a source of light
seen reflected from the curved surface.

The instrument enables us to measure the distance between two
points, or the diameter of an object, without taking into account
its distance, by an optical method.

It consists of a small telescope with two plane parallel thick glass
piates in front of the objective, arranged so as to rotate about a
common 8axis, the angle of inclination between the plates being
measured by a graduated circle. If the object is at a great dis-
tance rotation of the plates produces no effect of course. If at a
small distance we see it doubled as soon as the plates are inclined,
and by setting the plates in such a position that the two images
touch each other end to end, and reading off the inclination we can
determine the length [ of the object by the formula

F1a. 60.

2 _cn? s
l=2a sin«p\/" SIN" @ —CoS @,

n*—sin? @

in which a is the thickness of the plates, n their refractive index, and
& the angle through which each plate is turned from the zero posi-

tion (plates parallel).
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As will be seen, the distance of the object does not come in at all.
As we bring the object nearer, it appears larger, but the angular
shift necessary to produce a given displacement increases at the
same rate. In other words there is compensation. The instrument
can be used only for measuring objects at a moderate distance.

Refraction of a Spherical Wave at a Plane Surface. — Suppose a
spherical wave originating at O (Fig. 61) to be refracted at the plane

Fia. 61.

surface AB. If we construct
the refracted wave-front by
the method of Huygens, mak-
ing the points on the refract-
ing surface the centres of sec-
ondary wavelets whose radii
are found by dividing their
distances (measured along
rays) from the wave in its un-
refracted position, by the re-
fractive index of the medium,

we shall find that the incident wave is flattened down into what at
first sight appears to be a sphere of less curvature. Let us inves-
tigate the form of the refracted wave, which is sometimes errone-

ously stated to be an hyperboloid.

Suppose light diverging from O to
be refracted at the surface AP
(Fig. 62). Draw an incident ray OP,
which is refracted in the direction
PQ. Draw OD L to the surface, and
produce it to O’, making OD= DO’.
Draw a circle passing through the
points O, P, and O’, and produce
PQ backwards until it intersects the
circle at M, and the prolongation of
00’ at J. £ DOP=incidence Z,
also O’'M P, both being measured by
arc O'P. Moreover £Z0MJ =inci-
dence Z, being equal to O’'MP, be-
cause OMO'=0P0’ (measured by
1 arc 0AO0’) and OPO’'=n—-21. We
can now write

Fia. 62.

sint _ 0'J

sinr O'M’
since sin O’'MJ = sin 7 (supplementary angles) and the sides of A

in ratio of sines of opposite angles.

= -O,J = OJ :
“=om oM’
_0J=-0J ___ 00 and O'M - 0M = 00" _ Constant.

e OM—0M_ OM-0M

[

This same relation holds no matter where P be taken, conse-



REFRACTION OF LIGHT 71

quently the locus of M is an hyperbola having O and O’ for foci, and
the refracted ray PQ is normal to the hyperbola at M. The hy-
perbola is therefore the orthogonal surface of the refracted wave,
since it is everywhere normal to the refracted rays, and the rc-
fracted wave-fronts are parallel curves, located by measuring off
equal distances on the rays from the hyperbola. They will not
be themselves hyperbolae, for the parallels to a conic are in general
curves of the eighth degree. The evolute of the hyperbola is the
caustic of the refracted wave, in this case virtual of course. After
refraction, then, the different elements of the wave-front appear to
come from points distributed along the caustic. If then we transfer
our eyes from one position of the wave-front to another, the posi-
tion of the radiant point in space will apparently alter. The same
thing is true when the waves are refracted from a dense to a rare
medium, the caustic in
this case being the evolute
of an ellipse, and the re-
fracted waves parallels of
an ellipse. The formation
of a caustic under these
conditions is shown In
Fig. 63.

A ‘small portion of the
wave around the ray leav-
ing the surface normally
comes from the cusp of
the caustic, which we may
regard as a point, conse-
quently this portion of the wave is approximately spherical.

The cusp of the caustic from which this portion comes is elevated
above the true radiant point, consequently the refraction appears
to bring the point nearer the eye. The bottom of a vessel of water
consequently appears to be nearer than it really is.

The apparent elevation of the bottom of a body of 'still water is
a matter of common observation. It is most marked when the
eve is only a little ahove the plane of the surface and the bottom at
a considerable distance is under observation. The rays which leave
the surface at nearly grazing emergence come from that portion
of the caustic which is very near the surface, as is apparent from
Fig. 63. The bottom at a distance may thus appear elevated
almost to the surface.

In the case just considered the caustic is virtual and not real, and
since it is in reality non-existent, there are no moving cusps on the
wave-front as in the cases considered under reflection. If we could
reverse the emergent wave, and at the same time remove the water,
the caustic would become real, and cusps would develop upon the
wave-front. This cannot of “rse be done experimentally, but
attention is drawn to it ir. . to clearly define the difference
between a real and virtual caustic.

Refractive Index of a Plate measured by the Microscope. -—
This apparent elevation of a point due to the decrease in the radius

Fia. 63.
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of curvature of the wave-front when it emerges into the air can be
used for measuring the refractive index of a glass plate, of which
we know the thickness d. An object seen through the plate ap-

pears nearer by the amount a= ‘ﬂﬁn_ll

If we focus a microscope upon an object, and then place the glass
plate over it, we shall have to raise the microscope through a dis-
tance a to brmg the object into focus. The refractive index is then

given by n—d_d_a' We should use an objective of as short focus

as possible, consistent with its use with the plate. It is best to
provide the eye-piece with cross hairs and focus by absence of
parallax, 7.e. so that there is no relative motion between the object
and the cross hair as the eye is moved from side to side.
Two modifications of the method may be cited. Make a mark
on the upper and lower surface. To change from one to the other

the microscope must be raised a distance a: then n= d—. Make

a small dot with white paint on the upper surface and ﬂlumlnate
it from above, on a dark background. Focus first on the object
and then on its image seen reﬂected from the lower surface, moving

the microscope a distance a: then n= 2a—d. The values are correct

to the third place of the decimal if the observations are made with
great care.

Fermat’'s Law. — In the case of reflection we have seen that the
path of a ray from one point to another by way of a reflecting sur-
face is either a maximum or a minimum. The same is true in the
case of refraction, as we shall now show. If the refracting surface
18 plane, the time of transit is a minimum, and we have what is
known as the principal of least time. If the refracting surface is
curved, the time may be either a maximum or a minimum, acco
to whether the refracting surface lies within or without the aplanatic

surface, the same as in the case of reflection.
A Fermat’s law may be deduced from Snell’s
5 law by the maximum and minimum

X method of the calculus.
v Let A be a luminous point at height a
, above the refracting surface A’B’, and B a
—F point illuminated by a disturbance reach-
. ! ing it by way of any point on the refracting
v ¥\ b surface, for example, over the path APB
v (Fig. 64). The time of transit obviously
changes with the position of P. We will
start by assuming it to be a maximum or
Fia. 64. minimum, and see if the ordinary law of

refraction follows.

From A and B drop perpendiculars on the refracting surface, of
length a and b respectively : let the distance A’B’'=p, then A'P= =
and PB’=p—z. Call the velocities in the two media v and ¢’,
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then the time along AP is —‘%}—P and the time along PB is — PB, The

v’
whole time, which we require to be either a maximum or a minimum,

¢ = AP PB or {= V 2+ \/b2+(p x)’
v v’ ! v/
at _ z P—Z _
az oVar+2? VP +(p—z)
Now L _ —gin®, and P—T _ _ginv;
Vai+z2 Vb + (p—1z)?
o S sm'\l" or S0 ¥ _ Y =Const., which is Snell’s law
v v sin¥ v

A second differentiation, or in this case a mere inspection of the
figure, shows us that the time is & minimum.

We will now examine the case of refraction by a curved surface,
~ following a demonstration by Czapski.

- In Fig. 65let AB be a portion of an aplanatic refracting surface.
Though we have not yet discussed this surface, we can make use of
it in the present case. It is the
surface which will bring all rays
emanating from O accurately
together at O’, or change the
expanding spherical waves into
contracting spheres with centres
at 0’. The times of transit over
all paths from O to O’ by way of
the aplanatic surface (a surface
capable of bringing rays to-
gether at a point) are equal, or FiG. 65.

if n and n’ be the refractive in-

dexes of the media the reduced path is n(OP) +n'(PO’)=Con-
stant. (By reduced path we mean the length of path in vacuo,
which will contain the same number of waves as the number con-
tained in the actual path.)

Now suppose that we have a refracting surface A’B’ of greater
curvature than the aplanatic, which it touches at P. The ray inci-
dent at P is obviously the one which passes through 0’, and we are
to ascertain whether the reduced path is greater or less than any hypo-
thetical path through some other point on AB. Let this point be
at Q, for whlch the reduced path will be n(0Q) +n'(Q0O’). The ray
which reaches O’ by way of the point R on the aplanatic surface has
a reduced path n(OR)+n'RQ)+n'(Q0’) and the difference be-
tween them is

[n(0Q) +7'(Q0")] - [n(OR) +n’(RQ) +n'(Q0")],
or n(0Q - OR) —n’(RQ).

Now (OQ-OR)<RQ (sides of a triangle).
Therefore, since n < n’, n(0Q—OR) < n’RQ, and the path by way
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of @ is less than the path by way of B; but the latter is the same
as the actual path by way of P, therefore that path is a maximum.
In the same way we may show that if the refracting surface has a
curvature less than the aplanatic, i.e. lies without it, the path will
be a minimum.

Refraction by a Prism. — In the case of refraction by a prism we
have to determine the deviation of a ray or wave-front, by passage
through a medium bounded by two planes which make an angle with
each other; this angle is called the angle of the prism. If the
refractive index of the prism be greater than that
of the medium in which it is immersed, as is
usually the case, the deviation of the ray is al-
ways away from the vertex, that is, towards the
base of the prism. This is obvious at first sight,
except perhaps in the case in which the incident
ray falls on the prism in the direction shown in
Fig. 66, for here the deviation at the first sur-
face is towards the vertex, while that at the sec-
ond is towards the base, the final direction de-
pending on the relative magnitude of these two
deviations. The angle of refraction at the
second surface is greater than that at the first,

F1c. 66. and since the deviation increases as this angle

increases, the deviation towards the base at the

second surface is greater than the deviation towards the apex
at the first.

We will now derive an expression for the deviation. Let the angle
of the prism be « (Fig.
67) and let « and r be
the angles of incidence
and refraction at the first
surface, ' and 72’ at the
second. The deviation is
obviously D, the angle be-
tween the emergent ray
and the incident ray. The
deviation at the first sur-
face is t—r, at the second
v —7r', while

D=@-r)+ (" -7 F1G. 67.
=1+t —(r+7').

But r +r'=e, since « +the two base angles of the prism=2 rt. £
and (r+7’) +the base angles=2 right angles.

S. D=1+t —e.

This formula holds for the condition shown in the previous figure,
except that in this case the negative sign must be prefixed to the
angles © and r. Suppose the angle @ becomes zero, the prism then
becoming a plane parallel plate. The deviation then becomes
1(—1")—0, which is equal to zero (since in this case 1=1').
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Refractive Index of a Prism. — Let us now suppose the angle of
incidence to be such that the ray passes through the prism parallel
to the base. In this case :=1' and r=1/, and if we can measure D
and know the angle « we can easily determine the refractive index

of the prism.

We have D=2t—a, ori= ‘5;_1), also r= "2‘..
Substituting these values in u= §_gn__i we have pu= sin ’}(‘H'D)
sSin r sm o

We must now find some method of arranging the angle of incidence
so that the path of the ray through the prism will be parallel to the
base, since « is only for this condition that the above formula holds.

This adjustment is very easily made, for the deviation of the ray
can be shown to be a minimum when the passage through the prism
is symmetrical. There are several methods of proving this, the most
direct and rational being the method of maxima and minima of the
calculus. We must obtain an cxpression showing the change of
deviation with the change of the angle r, and by equating this to
zero derive the condltlon for a maximum or minimum. In other

words
dD _ d:D
dD _d(@+i'—a) _ —0.
dr dr
We have sin t=usinr, and sin ¢’ =usinr’ =pusin (a—7r).
Then t=sin"'(usinr) and ¢'=sin"! [xsin (e—7)];
*. D=sin~' (usinr) +sin~' [psin (e —71)] — a,
dD_ _ pcosr _ _ pcos(a—r) —0.
dr  [1-u?sin®r]! 1—p?sin?(a—r]}

> 0 (condition for minimum),

Expressing the cos by the sin we have
p(1—sintr)} _ ul1—sin?(a—r)} _,
[1—ptsin?r]?  [1—p?sin? (a—1))}

Equating the above terms, multiplying the numerator by the
denominator and cancelling, gives us,

(p*—1) sin?r=(u2—1) sin? (a—r),

4

a
orr=a—rand r=~-=r’,

2
By symmetrical passage r = r’; .". D is either a maximum or
minimum. A second dlfferentlatlon glves
d'D _ p—1

s a2 aint & _2'25*
(1 p2 BIn 2)(1 p? sin 2)
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If u>1 all the factors are positive and the whole expressron is
positive, therefore D is a minimum.

There is another condition for which we can get a simple expres-
gion for u, namely: when either the incident or emergent ray is
normal to the surface of the prism.

If =0, r=0, and =, D=t"—«.
w= sin (D+a)
sin &

Magnifying Power of Prisms. — When the prism is set at mini-
mum deviation the widths of the incident and emergent beams are

the same, otherwise not. For example: in Fig.

\ 68 when the incident beam falls normally on the

\ first surface, and leaves the second surface at a

large angle with the normal, the width of the beam

has been contracted. If we view an object under

these conditions, the eye being placed in the con-

tracted beam, we shall find that it is magnified in

the direction in which the beam has suffered con-

traction. A circular opening in a card backed by

a sodium flame is a suitable object, and will be

found to appear as an ellipse. If an achromatic

prism is available a circular white object can be

Fio. 68. ~ used, when the effect is very striking. If on the

other hand the incident light makes a large angle

with the normal, the emergent wave-front is expanded in width,

and, if the eye be placed in it, the object will appear decreased in

size In this dimension, a circular card appearing as if turned edge-

wise. Brewster suggested that by using two achromatic prisms

at right angles to each other, magnification might be shown in
both directions, and the action of a telescope imitated.

Lord Rayleigh has given a very neat demonstration of magnifying
power, based on Fermat’s law, which is applicable to telescopes as
well as to the case just cited. It proves by a wave-front method
that the contraction of a beam of light, or
the compression of a wave-front, causes
magnification. Consider a wave-front of
width A B (Fig. 69) refracted at the surface
CP, and compressed thereby to width
A'B’. By Fermat’s law the time of
transit over the path ACA’ is equal to the
time of transit over the path BPB’, beinga ¢
minimum in each case. This we may ex- &<....

press by saying that f pds (the reduced

path) is the same along each ray. If from Fia. 69.

any cause B is retarded relatively to A,

say an amount BE, B’ will be retarded an equal amount relatively
to A’, namely B’E’ = BE.! If this retardation be considered as

! This is of course only true if AB and A’B’ are in the same medium : the first
surface of the prism, parallel to AB, is not represented.

Therefore
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represented by a rotatlon of the wave-front A B through angle ¢ it
will be measured by (AB)8. The wave-fronts AB in the two po-
sitions can be thought of as two separate fronts coming from two
distant stars subtending an angle 6 at the point of observation.
The retardation of B’ must be of the same amount, consequently
the rotation of the wave-front A’B’ will be much greater than 6,
being measured by & (A’B’). Since the retardatnons are equa.l
we can write 0 4
IBI

® AB

Now @ is the angle formed by the rotation of A’B’ the compressed
wave-front, consequently we may regard it in its two positions as
two fronts coming from stars which subtend an angle ¢, as much
greater than 0 as A B is greater than A'B’.

The same reasoning can be applied to telescopes, the compression
here being symmetrical, a plane-wave of large area emerging from
the eye-piece as a plane-wave of small area, the magnifying power
being equal to the ratio of the widths of the stream of light before and
after entering the telescope.

Refraction by a Lens. — In the chapter on reflection it has been
shown that a parabolic mirror transforms a plane-wave into a con-
tracting spherical wave, while an ellipsoidal mirror exerts the same
action on spherical waves originating at one of the foci. It is pos-
sible to construct refracting surfaces having the same property.
We will begin by computing the refracting surface, which shall be
aplanatic for spherical waves.

Let O (Fig. 70) be the luminous point, and O’ the conjugate focus
where the converging waves
are to shrink to a point. By
Fermat’s principle the re- u=1
duced paths along the differ-
ent rays will be equal, and
the disturbances will all reach
O’ in the same phase, result- ¥
ing in intense illumination.
Suppose O to lie in a medium
of ref. index 1, practically in
air, while O’ is in a medium A
of ref. index 2 between o
which we require an apla- Fia. 70.
natic surface of separation.

Let r and r’ be the distances of any point on the surface from O
and O’, then r+ur’=Constant, the equation of a Cartesian oval.
Choose & point on the line joining O and O’ such that r=5 and
r’=7. The constant for thls particular case will be 19. Now de-
scribe around O a circle of radius 6 and around O’ a circle of radius

of EE-_Q The intersection of these circles will give two more
points on the aplanatic surface, which can be gradually built up by

giving to r constantly increasing values.

6(AB)=%®(A’'B’) or —
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The general form of the equation of a Cartesian oval is

pr +p'r =Constant, from which we get %-}-p’% =0.
In the case just considered the conjugate foci lie in different media.
If they are to be in the same medium we require an intervening
medium capable of effecting the required change in the form of the
wave-front. We thus come to the Aplanatic Lens.

Spherical light waves, originating at a point in air, are to be trans-
formed by a lens into converging spheres which come to a focus at
another pomt also situated in air. Suppose the lens to be midway
between the two points and the curvature of its two surfaces the
same. The spherical wave will be changed into a plane-wave by the
first surface, consequently the simplest way to construct the form
of the lens will be to trace the surface aplanatic for a plane-wave by
the method given above, modifying it, however, in such a way as to
make the sum of any path measured along a ray from the plane-
wave to the aplanatic surface, and the reduced path from this
point to the focus, a constant. These aplanatic surfaces are, how-
ever, of very little practical importance, for they can only be re-
produced approximately, and then only when the departure from a
spherical surface is very slight. In the process of lens making the
surfaces which are being ground together assume of their own
accord a spherical form, since two surfaces, to fit together in all po-
sitions, must be of constant curvature. Lenses with spherical sur-
faces do not bring rays accurately to a point, or in other words do
not give converging waves which are truly spherical. This results
in what is known as spherical aberration, which has been treated
sufficiently for the purposes of this book under reflection. A spheri-
cal surface may be made approximately aplanatic by local grinding,
if the amount of material to be removed be not too great. This
process is known as correcting the lens for spherical aberration, or
figuring, and is largely a cut and try operation.

Refraction by Sphere. — There is one special case in which the
spherical lens is aplanatic, which is made use of in the construction
of the microscope. Weierstrasse gives this simple method of con-
structing the refracted rays when mcldent upon a sphere.

Suppose a sphere of refractive index n’ and radius r immersed in a
medium of refractive index n. If the sphere is in air, n=1.

Describe a circle of radius r represe'nting the sphere, and around

its centre two other circles of radii *r» and 1‘;r, respectively, as in
n n

Fig. 71. Draw the ray LFE incident upon the sphere at E, at
incidence angle «, and continue it until it cuts the outer circle at A :
then join this point with the centre, the line cutting the inner circle
at A’. The line EA’ is then the refracted ray. If now we have a
convergent system of rays falling upon the sphere, which would
unite at A if the sphere were absent, it is clear from the con-
struction that the sphere will bring them all together in a point
focus at A’. Conversely if rays emanate from A’ within the
sphere, they will, after refraction out through the lower half of the
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sphere, traverse paths which, if produced backwards, meet at A.
A and A’ are called the aplanatlc points of the sphere, and the sphere
is an aplanatic surface for these two points, one of which is real the
other virtual. .

Fi1a. 71.

The proof of the above construction is as follows.
1angles EM A and EMA’ are similar having Z® in common,
and its enclosing sides in equal ratio’

EM _AM _n

MA' EM
. ZEA'M=Z AEM,
and since AEM =a, 8=a.
In triangle EM A’

sind _ EM
sinf A'M

’

_n
n

. sine_n'
'smﬁ n

Microscope Objective. — The existence of the aplanatic points
just proved was utilized by Amici in the construction of micro-
scope objectives of wide aperture. A section of such an objective is
shown in Fig. 72.

A hemispherical lens I receives the wide cone of rays from a
point at L. After refraction by the plane surface, they pursue
directions as if coming originally from Ll If L' is the aplanatic

point refraction by the spherical surface will render them still less
divergent without introducing any spherical aberration. Since
refraction at a plane surface introduces aberration, better conditions
obtain if a of some 0il having the same refractive index as the
glass is introduced between the plane surface and the object,
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. _¥ yp=1.
.. MD 2rN 55

: _ ¥ _y1 )
. MN= 2r+28 2<r+s ..

Denote OD by 4 and O’D by v, and we have
OA=u+ Y and O'A=v+ -2’% (approximately);

2u
- 0A+0'A=00'+l’(-1- +l)- )
2\u o
“x.
- - g.
e e T B B R T o
! 8 v

Fia. 73.

But OA +0’'A=0M +0O’N +p(MN), and substituting from (2)
we get

2
Substituting for M N the value given in (1),

£ -5

2\r

1,1 1 1N\_1

u+v (i l)<r+s) [’
where f is the value of v when u = o, that is when the incident rays
are parallel. The focal length of the lens is therefore f. Measure
the radii of curvature of the two surfaces of a lens and its focal
length, and determine g.

Refraction of Light in Non-Homogeneous Media. — The con-
sideration of the laws of refraction in media in which the refractive
index varies continuously from point to point leads us to a most in-
teresting class of phenomena, the most com-
mon examples of which are the illusions
known as Mirages. )

As an introduction to the subject it will be N
well to investigate the refractnon of a ray of
light by a number of media of different re- b\ v
fractive indices arranged in horizontal strata
of equal thickness. Let the velogities of light Fic. 74.
in the different strata be represented by v, ¢',
and v”’, and let the angle of incidence on the first layer be t (Fig. 74)
— we reqmre the deviation of the ray by the two boundaries.

(p—1)MN = l’(ﬁ + %)
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of the atmosphere into account. The effect of refraction is to make
the star appear higher up above the horizon, or nearer the zenith
than it really 1s. For stars at the horizon the elevation amounts
to 36 minutes of arc.

Now we have seen that the final direction of the ray is indepen-
dent of the layers intervening between the medium in which the
observation is made and the region from which the light comes; it
is therefore apparent that the change in direction can be determined
by determining the refractive index of the air at the point where
the instrument is situated, which can be done by observing its
temperature, pressure, etc.

The curvature of light rays in the atmosphere also influences the
apparent positions of objects on the ea.rth’s surface, the usual effect
being an elevation of an object above its true p031t10n a circum-
stance which must be taken into account in all geodetic observations.
As a result of this refraction it is possible to see the sun and the
eclipsed moon above the horizon at the same time.

While the radius of curvature of a ray of light travelling parallel
to the earth’s surface is much greater (about 7 times) than the
radius of the earth, it is possible to conceive of an atmosphere with
a density gradient sufficient to lessen the radius of the ray to that
of the planet. If such a condition prevailed a ray would travel
completely around the planet, if the atmosphere were perfectly
transparent. In some cases we may even have an atmosphere with
a density gradient sufficient to give us an even smaller radius of
curvature,

Schmidt’s Theory of the Sun. — Schmidt has made the sugges-
tion that the sun may be such a body, and that the disk as we see
it may be an optical illusion. He considers the sun to be a mass
of gas the density of which increases from the surface towards the
centre. At a sufficient depth the radiation of the gas will be
‘“ white ”’ light, t.e. it will give a continuous spectrum. What we
shall see, however, will be a white-hot ball with a sharply defined
rim. The radius of the ball will be the radius of the sphere taken
within the gas mass, upon the surface of which light rays will have

a similar radius of curvature. Schmidt calls this the ecritical

here.

In I"ig 76 consider the circle to be the critical sphere, and

e light radiated in all directions from a point A deep down
mthm the gas mass. The ray B, with a small radius, w111 turn
back into the mass; the ray D leavm A at a smaller angle with
the normal will travel a.round the cntlcal sphere; while the ray E,
leaving A at a slightly less angle, will pass off into space. Other
rays, such as C, will also pass off into space, but will not reach us.
If the gas without the cntlcal sphere does not emit light the ray £
will come apparently from the e(lge of the critical sphere, notwith-

the fact that it originated much deeper down in the mass,
where the gas is radiating lnght as a result of its high temperature
and denslty On this theo what we call the dlameter of the sun
is merely the diameter of the critical sphere, plus a slight increase
due to the refraction of the gas outside of it. An atmosphere can
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in the same way cause an increase in the apparent diameter of the
body which it surrounds. We can show this very nicely in the
following way. Make a small rectangular glass tank by cement-
ing five squares of glass together with sealing wax. Fill it with
melted gelatine and support an empty test tube in the fluid with
a clamp stand. The bottom of the test tube should be within
half a centimeter of the bottom. After the jelly has solidified,
pour hot water into the test tube, and immediately withdraw it. It
will leave a cylindrical hole in the jelly, with a hemispherical bot-
tom. Now pour a mixture of glycerine and powdered chalk into

Fia. 76.

the cavity until it is half full. Fill the remainder with water to
which a few drops of milk have been added. The glycerine will
gradually diffuse into the gelatine, increasing its refractive index.
The condition at the end of a few minutes will be not unlike that of
a white body surrounded by a dense atmosphere, for the refractive
index will be high at the boundary between the jelly and glycerine,
gradually decreasing as we pass out into the jelly. The magnifi-
cation resulting can be seen by looking through the side of the
trough, the lower portion of the cavity appearing swollen out like a
mushroom. If we perform the experiment with pure glycerine
and clean water the same thing happens. By placing an arc light
behind the tank and throwing an image of the cavity upon a piece
of ground glass with a camera objective, placed at the centre of the
shadow of the tank, we can see the bright ring of light which ap-
pears to surround the bottom of the cavity. This is analogous to
the ring of light which would be seen surrounding the earth by an
observer on the moon during a lunar eclipse, or rather a solar
eclipse. As the glycerine penetrates into the ‘jelly this ring of
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plane, so that the upper surface is continuous and flat, which can
be ascertained by ‘‘ sighting "’ it from one end (Fig. 79) The sur-
face 18 sprinkled with sand, to prevent reflection, which may occur
at grazing incidence. A sheet, of ground glass with an arc-light
behind it represents the sky, or a mirror mounted so as to reflect
the sky when viewed from the opposite end of the desert. The
artificial sky must come down to the level of the sanded surface,
and in front of it a chain of mountains cut out of pasteboard is
mounted, with peaks varying from 1 to 2 cms. in height, and val-
leys which come quite down to the sand. The desert is heated by
a long gas burner made by drilling numerous small holes in a long
piece of gas pipe. The gas should be introduced at each end of the
long tube, and the flames should be about 5 cms. in height. If we
look along the sand, holding the eye an inch or two above the plane
of the surface, we shall see, as the desert warms up, what ap
to be a brilliant pool of water on the sand, in which the inverted
images of the mountains and sky appear reflected. Photographs
of this artificial mirage are shown in Fig. 80, Plate 3.

Another type of mirage, sometimes seen at sea, can be referred to
a stratum of hot air at a considerable distance above the earth’s
surface, which behaves in a manner precisely similar to the hot air
on the ground, giving rise to inverted images of distant ships high
above the horizon. Objects ordinarily below the horizon are fre-
quently brought into view, by the curvature of the rays resulting
from an abnormally rapid change in the refractive index of the air,
a case being on record where ships moored off the French coast
across the English Channel 20 miles distant were seen from Dover.

Mirages are frequently seen on cold autumn mornings over large
bodies of water, the air in the vicinity of the surface of the water
being warmed. A frequent illusion, known as Fata Morgana, is the
apparent elevation of objects on a distant shore into pinnacles and
columns. It results from a distribution of density similar to that
causing the desert mirage, the transition being less abrupt, however.
A medium stratified in horizontal layers, with a maximum refractive
index along the central plane, will render divergent rays parallel and
then convergent, the medium acting as a sort of continuous lens.

Fig. 81 is a somewhat exaggerated diagram of this effect. An eye
at O receives rays from O’ which have come over a number of differ-
ent paths, and can be considered
as situated at a focus towards
which these rays converge. O’
¢ will therefore appear magnified
in the vertical direction into a
column AB. As the curvature
of the rays is only in vertical
planes there will be no corresponding horizontal magnification.
Rocks and other objects lying along the shore are thus seen raised
to the dignity of lofty cliffs, and blocks of ice floating in the water
appear as white pinnacles.

Non-Homogeneous Cylinders as Pseudo-Lenses. — If there was
a similar variation in the refractive index in horizontal directions,
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magnification in all directions would occur. In a medium capable
of acting in this way the equi-indical surfaces, or layers, of equal
refractive index will be coaxial cylinders, the highest refractive
index being along the axis. Exner has shown that the eyes of some
insects are arranged in this way, the convergence of the rays to a
focus resulting from the action of a non-homogeneous medium.

Cylinders of gelatine soaked in water were found by Exner and
Matthiessen to behave in the same way.

It is possible to prepare cylinders which have the maximum
refractive index on the surface or along the axis, and act accord-
ingly as concave or convex lenses.

The original method has been improved by the author by the use
of glycerine. These pseudo-lenses are not at all difficult to pre-
pare and are extremely interesting. A handful of photographic
gelatine is soaked in clean water until thoroughly softened. The
excess of water is poured off and the mass is then heated until quite
fluid, and filtered through a funnel with a small piece of absorbent
cotton placed at the bottom of the cone. If the gelatine refuses to
run through, add a little more boiling water. Pour a small quan-
tity into a test tube, and let it stand until solid. Evaporate the
remainder over a small flame, stirring constantly until 1t is of the
consistency of syrup. This means boiling 1t down to one-third or
less of its original volume. Now add an equal volume of glycer-
ine, and pour the mixture into a second test tube. After the jellies
have set, crack the bottom of the tubes by a sharp blow, warm
them by the momentary application of a Bunsen ﬂa.me and push
out the cylinders.

Cut the cylinders into disks of different thicknesses, with a warm

pen-knife. The best thickness is about two-thirds of the diameter.
\Iount the disks between small squares of thin plate-glass (wmdow
glass will do), warming the plates slightly, :
to insure getting the jelly into optical con-
tact (Fig. 82). It may be found necessary
to prop the upper plate in position until
the surface in contact with the glass has
‘““get.”” The cylinders which are made of
gelatine and water are now to be immersed
mn glycerine, the glycerine jelly cylinders
in cold water. The glycerine should be stirred occasionally, as the
layers in contact with the jelly take up the displaced water. The
action will be found to be wel] under way in a quarter of an hour,
the glycerine gradually diffusing into the jelly, driving out the
water, and the water gradually replacing the glycerine. A jelly
containing glycerine has a higher refractive index than one contain-
ing water, consequently the cylinders soaked in glycerine act as
concave, whlle those soaked in water act as convex lenses.

The focal length will be found to be only 8 or 10 cms., and very-
sharp images of the filament of an incandescent lamp or a gas
flame can be obtained with them.

Schott has prepared similar cylinders of glass, by pouring the
molten glass into iron tubes. The sudden chilling of the outer

F1a. 82.
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layer produced tension in the glass cylinder, and a corresponding
variation in the refractive index, plane parallel plates cut from the
cylinder acting as concave lenses.

Following the mathematical treatment which Exner gave for
cylinders of this nature, we arrive at two interesting conclusions,

namely that the ordinary lens formula 1 + 1 =} holds for them,

U v

and that to be aplanatic, the equation which shows the relation be-
tween the refractive index and the distance from the axis of the
cylinder is that of a parabola.

T e 5 -

F1a. 83.

Let O (Fig. 83) be the source and O’ the conjugate focus, at dis-
tances a and b from the surfaces of a cylinder of thickness e.

Consider the ray incident at angle «, at a point at distance z from
the axis, where the refractive index is n. The angle of refraction

B= z- From now on the ray moves in a path which is approxi-

mately circular for rays near the axis, turning through an angle i
before reaching the second surface (r = radius of curvature of ray).
The ray meets the second surface at an incidence angle y= i -8B,

for 8 and y can be regarded as angles of a triangle whose exterior

angle i is equal to their sum. The angle of refraction into air is

€ €
8=ny=ﬂ—-—nﬂ=n——a.
r r
Since we are considering rays near the axis z,=2xy=z, where z is

the distance of any point on the ray from the axis

E:S:’E_a=7_1_€._£’ or £+£=7_?£. . . . (1)
b r r a a b r
> We now require an expression for r, the radius of

curvature of the ray.

Let G H be the element of wave-front (Fig. 84); the
velocities and refractive indices at ¢ and H are respec-
tively v’, n’ and v, n, which are so related that »">v and
n>n'.

If the radius of the secondary wavelet around G is GL
and the radius of the one around H is H K, the radius of
curvature r will be found by producing L K until it
meets GH produced, say at J. If GH equals dz,
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r HK n'_n+dn
—— A —— ——— —
T dz - OL (Homol gsides of =A)= = m—

where dn is the increment of n correspondmg to the increment dx.

rn=(r+dz)(n+dn), rdn=—ndz, 1 = —197
r n dx
: T ox__ G0 (2
By equation (1) a+b < (2)

Now n=f(r)=n+ecx+csx’+ca’+-.- in which n, equals the
index at the axis, and on account of the symmetrical distribution of
n around the axis, n has the same value for —z as for +z, and

G=0C=0Ce=0,

". for nearly central rays n=n,+c¢s2?, . . . (3)
dn 1,1
—_—=2 —=—92ce=

Az, - + 7 cse= Constant,

in which ¢; is a constant dependmg on the law of change of the re-
fractive index.
1

If welet —2ce= %, we have (4) - +-;— = > the classical formula for

lenses. This formula shows us that the focus is inversely propor-
tional to the length of the cylinder.

By combining (3) and (4), we get n=mn;— letz’,

nm—n= 2l and if n,—n=An, ?=2pAn.
2 pe

If we plot x and An on a system of rectangular coordinates, we
shall get a parabola.

We have thus far confined our attention to nearly axial rays for
which z is small, and obtained our final expression by neglecting
powers higher than the square in the series. Let us now consider
rays farther removed from the axis, and determine the law govern-
ing the change of refractive index which must hold if the cylinder
bring all rays to the same focus, or be aplanatic.

By (2), we have —-5@=1,
zdr p
- cpdn =zdz
(Integrating) —epn= ’4; + Const.

For =0, n=n, and since the above equation holds for all
values of z it holds when z=0. From this relation we determine
the constant to be —epn,

= E e, mmm -, 2,
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an expression identical with the one which we obtained for the axial
rays. .

The nature of the function is therefore parabolic, and if we plot
ordinates equal to the refractive indices, and
abscissae equal to the plus and minus values of
z, we shall get a parabola, which is concave
Axys down or up according to whether the hi
or lowest value of n is found along the axis, or
according as we consider a cylinder (Fig. 85)
which acts as a concave or convex lens.
______________ 1 If we consider the cylinder to be of infinite

"""" length the rays will come to a focus on the
W‘Tﬁ axis, then diverge again, and moving in curved
paths come to a focus again at a point further
along on the axis.

The same thing will take place in vertical
planes or in two dimensions if the equi-indical

F1a. 85. surfaces are parallel planes instead of coaxial

cylinders. Such conditions sometimes exist

in the atmosphere, as Professor Everett has shown, and if the eye

be situated at the focus where the rays come together, vertical mag-
nification of the object will result as we have seen.

Curved Light Rays. — A ray of light entering a medium of this
description will be bent towards, and cross the line of maximum
optical density, where it changes its curvature and is again bent
towards the line, which it may thus cross again and again, travers-
ing a path which is approximately a sine curve. If we are dealing
with a diverging pencil of rays, the rays will alternately converge to
and diverge from a focus, passing in this way through a number of
successive foci. These effects can be well shown by the following
device, which was described by the author in the Philosophical
Magazine for April, 1899.

A glass trough 50 cms. long by 10 cms. high and 2 cms. wide, with
plate glass ends, is filled to the depth of 3 cms. with a strong solution
of alum. On this is floated a layer of water containing 10% of
alcohol, which is very much lighter than the alum solution, though
having about the same refractive index. A mixture of glycerine and
85% alcohol has a much higher refractive index, but a specific grav-
ity intermediate between these two liquids, consequently it is pos-
sible by means of a glass siphon, drawn down to a small aperture
which is bent in a horizontal direction, to introduce a layer of it
between the alum solution and the supernatant water. The nec-
essary precautions and fuller directions will be found in the original
paper. The three solutions were previously acidified with sulphuric
acid, and rendered fluorescent with sulphate of quinine in order
that the paths of the rays could be followed. By cautious stirring
the diffusion of the layers into each other can be assisted, and we
shall have as a result a medium in which the refractive index
increases from the surface towards the median plane, and then de-
creases from this plane towards the bottom, the condition being
similar to the atmospheric condition producing the Fata Morgana.
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shadow-bands which are visible. Their presence, however, can be
inferred from the well-known fact that the brilliancy of the star
observed by the eye appears to suffer rapid periodic changes, the
star appearing bright or feeble according to whether the eye is in
a light or dark area of the moving system of shadows. The width
of the bands is frequently not over 3 or 4 cms. This means that it
may easily happen that one eye is in a dark, while the other is in a
bright area at the same moment. If we look at a star with the eyes
slightly converged, which we can easily do by focussing them on
some object at a distance of five or six feet, and in a line with the
star, the star will appear doubled and the two images will fluctuate
in intensity, but the fluctuations will not be * in step,” one eye see-
ing the star dark at the moment when the other eye sees it bright.

If a star is viewed through a telescope of large aperture, the
resultant illumination at the focus is the integral of the bright and
dark bands covering the object-glass at the moment, and this aver-
age illumination is practically constant, therefore scintillation is no
longer observed. If the aperture of the instrument be contracted
by a diaphragm of such size that only the light of a single bright or
dark band can enter the instrument, the twinkling reappears. It is
possible in this way to actually measure the radius of curvature of
the corrugations of the wave-front in the case of star light. Sup-
pose that at a given instant the wave entering the small aperture of
the telescope is concave, it will come to a focus at a point slightly
nearer the ohject-glass than the focus of the telescope for objects at
infinity. At another instant when the aperture is in a dark band
where the wave is convex, the focal point for this wave will be
behind the principal focus. As the dark and light bands sweep
across the aperture the image of the star will alternately appear
sharp and blurred. If the eye-piece is at the focus for the concave
wave it will be inside the focus for the convex wave. By pushing
the eye-piece in up to a point where it is possible to occasionally
catch a glimpse of a sharp image of the star, and then drawing it
out to a point outside the focus, for which the same conditions pre-
vall, it will be possible to determine the minimum radius of curva~
ture of the convex and concave portions of the wave-front. Meas-
urements made in this way show that the average radius of curvature
is about 6000 metres, although it may sometimes fall as low as
1800 metres, or rise as high as 20,000 metres. Obviously the con-
ditions most favorable for work with astronomical instruments are
to be found when the radius of curvature of the corrugations is very
large. This means that the waves are approximately plane.

One other point is worthy of mention in this connection, namely,
the difference hetween planets and stars in the matter of twinkling.
In the case of planets the light comes from a luminous disk of an
appreciable size, every point of which produces a system of shadow-
bands of its own. It is true that the inclination to each other of
the rays coming from the different portions of the planet to the eye
is very slight, but when we consider that they have traversed a dis-
tance of, say 6000 metres, in coming to a focus, that is, in forming
a bright band, it is easy to see that the light from one side of the



REFRACTION OF LIGHT 93

planet may easily produce a system of shadow-bands exactly
out of step with those produced by the light of the other side of the
disk. The ‘superposition of a large number of shadow systems re-
sults in practically uniform illumination and absence of scintilla-
tion. This explanation of scintillation, while it accounts for alterna-
tions in the intensity of the light, does not account for the peculiar
chromatic changes which were first observed by Respighi. If the
spectrum of a scintillating star is observed it is seen to be traversed
by broad dark bands, parallel to the Fraunhofer lines, which travel
from the red to the violet, or from the violet to the red, according
as the star is in the west or the east. If the star is in the zenith,
the motion of the bands is oscillatory. Respighi believed that the
chromatic changes were due to the rotation of the earth. Owing to
the dispersion of the air the violet rays will reach the eye over differ-
ent paths from thoee traversed by the red rays. In Fig. 89 the

)
&
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F1a. 89.

dotted arc represents the upper limit of the atmosphere of the earth,
which rotates in the direction of the arrow. Let the observer’s eye
be situated at A. Two parallel rays from the star are designated
by 1 and 2. The dispersed rays are designated by r and v. It is
cleu' that the violet rays from 1, and the red rays from 2, enter the
eye or the spectroscope at 4, if 1 and 2 are taken a little closer
together than in the diagram. The violet rays thus traverse paths
lying above those traversed by the red. Let us now imagine that
one of the irregularities in the air previously mentioned, indicated
by a black spot, lies in the path of the red rays, and suppose further
that this irregularity is of such a nature as to cause the wave-front,
ongmally plane, to become convex. The intensity in the red region

uently become less, for reasons already given. The ro-
tatlon of the earth now comes into play, carrying this irrcgularity
up and into the path of the violet rays, causing the minimum of
mtenmty to shift from the red towards the violet end of the spec-
trum. This is the sequence observed by Respighi for a star in
the west, which is the case represented in the dmgram These
chrom.tic changes manifest themselves to the eye as an irregular

in the color of the star.

The effective velocity with which the refracting mass of air is
carried across the rays is obviously the difference between the
velocity of the surface of the earth and a region high up in the air.
Their angular velocity is the same, but the actual velocity of the
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upper atmosphere is a little greater, owing to its greater distance
from the earth’s centre, and a little calculation will show that dif-
ference is of the right order of magnitude to account for the chro-
matic changes observed by Respighi.

We should also have dark bands moving across the spectrum if
the upper air currents were in rapid motion, for a wind would
cause the refracting regions to sweep across the ray paths as well as
the rotation of the earth. Perntner in his Meteorological ’
expressed doubts as to the correctness of Respighi’s theory, and
ascribes the constancy in the direction of motion of the bands in
the spectrum to the fact that the upper air currents travel for the
most part in the same direction. Probably both factors come into
play, and until more data have been obtained it is impossible to
say which is the predominant one. As Perntner points out, the
prevailing winds in the southern zones are easterly, which should
cause the bands to move in the opposite direction along the spec-
trum. Data obtained by observers in southern latitudes are
much to be desired. .

The Method of Striae. — A very ingenious and beautiful method
was originated by Topler (Wied. Ann., cxxxi., p. 33) (which he
named the ‘Schlieren-methode’’) for making visible in a trans-
parent medium those regions in which the refractive index differed
but slightly from that of the surrounding regions. By employing as
a source of light the instantaneous flash of an electric spark he was
able actually to see the spherical sound-waves sent off from another
spark which had occurred a moment before. Mach has used the
method extensively for studying by photography the air waves
given off by sparks, and accompanying rifle bullets in their flight,
and an extensive series of photographs were made by the author
(Phil. Mag., Aug. 1899, July 1900, May 1901) of sound waves
undergoing reflection and refraction, to illustrate some of the fun-
damental principles of optics. The apparatus for showing these
waves can be set up in a few minutes, with very little trouble, and
as the experiment is a very beautiful and instructive one it will be
described in detail.

~ The general arrangement of the *“ Schlieren ”’ apparatus is shown
in Fig. 90. A good-sized achromatic lens of the finest quality ob-
tainable, and of rather long focus, is the most important part of
the device. The object-glass of a small telescope three or four inches
in diameter is about right.

This lens is mounted in front of a suitable source of light (in thé
present case, an electric spark), which should be at such a distance

that its image on the other side of the lens is at a distance of about
fifteen feet.
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necessary that the capacity of the jar be quite small. This limits
the length and brilliancy of the illuminating spark, and with the
device employed by Topler it was impossible to get enough light
to secure photographs of the waves. After some experimenting it
was found that if the spark of the jar was passed between two thin
pieces of magnesium ribbon pressed between two pieces of thick
plate glass, a very marked improvement resulted. With this form
of illuminator five or six times as much light could be obtained as
by the old method of passing the spark between two brass balls.

- -
- -
-
.-
-
- -

é lesommvaram I:c

The spark is flattened out into a band, and is kept always in the
same plane, the light issuing in a thin sheet from between the plates.
By this arrangement we secure a light source of considerable length,
great intensity, and bounded by straight edges, the three essentials
for securing good results. The glass plates, with the ribbon ter-
minals between them, must be clamped in some sort of a holder and
directed so that the thin sheet of light strikes the lens: this can
be accomplished by darkening the room, fastening a sheet of paper
in front of the lens, and then adjusting the plates so that the paper
is illuminated as much as possible. The image formed by the lens
will be found to have very sharp straight edges, on one of which
the edge of the diaphragm can be set in such a manner as to allow
but very little light to pass when the intervening medium is homo-
geneous; a very slight change, however, in any portion may be
sufficient to cause the entire amount of light passing through that
portion to pass below the diaphragm and enter the telescope.

For photographing the waves the telescope is removed and a
photographic objective put in its place. A vertical board is firmly
clamped behind this in such a position that the image of the balls,
between which the sound-spark passed, would be in focus on a plate
held against it. This arrangement is used instead of a camera,
because it is necessary to move the plate rapidly during the expo-
sure, to prevent the image of more than one wave being formed on
the same place. It was found that simply holding the plate in the
hand against the vertical board and advancing it slowly from left
to right, at the same time giving it a rapid up-and-down motion,
answered every purpose.

Fia. 91.
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water it is possible to see when the film commences to detach it-
self from the glass. If all goes well it will float off on the surface
of the water along the line of the knife-cut and the plate should be
slowly lowered (one end resting on the bottom of the dish) until the
rectangular piece detaches itself and floats freely on the surface.
The edges of the tank are well greased and then lowered carefully

upon the film, to which they will adhere. The whole must then
be lifted from the water in an oblique direction, when the film will
be found covering the tank and exhibiting the most beautiful inter-
ference-colors. The tank was filled with carbonic acid and placed
under the origin of the sound-wave. On striking the collodion-film
the wave was partly reflected and partly transmitted, and it will
be seen that the reflected component in the air has moved farther
than the transmitted component in the carbonic acid. The spheri-
cal wave-front is transformed into one which is parallel to an hy-
perboloid on entering the denser medium. This is well shown in
No. 3 of the serics, where the wave in air, moving at higher veloc-
ity, has passed out of the field entirely, and there remains only the
slower-moving disturbance in the denser gas. In No. 4 the waveis
seen returning up through the tank after having struck the bottom.

Photographs were also obtained of the refraction of the wave,
when the tank was filled with hydrogen, in which the sound travels
faster than in air. The bulging down of the wave-front was very
noticeable, though it is not as great as we should expect. These
explosive waves travel at a much higher velocity than ordinary
sound-waves (nearly double the speed), and it is highly probable
that the relative speeds in two different media is not the same as
for ordinary sounds, a matter worth investigating.

In examining liquids or solids for striae, or regions of variable
refractive index, we can employ a flat gas flame as our source of
light, covering the lower part of it with an opaque screen having a
straight edge. The lens will form an inverted image of this in front
of the objective of the viewing telescope, and all but a strip half a
millimeter or so in width is to be cut off from above by a second
screen. The object to be examined is placed immediately in front
of the lens. A piece of ordinary window glass makes a good object.
The heated air rising from the hand can also be seen, and if a tank
made of optical glass, filled with warm water, is placed before the
lens, a drop lifted out and allowed to fall back can be seen descend-
ing through the liquid: the change in the refractive index is ob-
viously due to the cooling by evaporation. Opaque objects placed
before the lens appear with brilliantly illuminated margins, the
light in this case being diffracted : with the arrangement of screens
described only the upper and lower edges appear illuminated, since
lateral deflection of the rays is without effect. The method is an
extremely useful one, and can be applied to many lines of inves-
tigation, and the student should be thoroughly familiar with its
possibilities.

Invisibility of Objects. —Opaque substances are seen by the
light reflected from their surfaces; transparent substances in
by reflected light and in part by transmitted light. If we analysze
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carefully the appearance of a cut-glass decanter stopper we shall
find it to be extremely complicated. Each facet reflects the image
of some object in the room from its surface, and in addition to this
shows some other object by refracted rays which have entered
some other facet, these latter being in general more or less spread
out into a spectrum by dispersion. If the stopper is wholly or in
part made of colored glass, the refracted rays passing through the
colored portions are modified by absorption, and affect the ap-
pearance. This remarkable complex, we say, looks like a stopper,
and unless we try to paint a picture of it, or have our attention
d_rawln to the details, we are apt to regard its appearance as quite
simple.

We thus see that reflection, refraction, and absorption all play a
part in making objects visible. It is interesting to examine into the
conditions under which objects are invisible. If they are immersed
in 8 medium of the same refractive index and dispersion, reflection
and refraction disappear; and if they possess in addition the qual-
ity of perfect transparency, they will be absolutely invisible, the
light rays passing through them without any modification either in
intensity or direction. Could a transparent solid be found whose
refractive index was the same as that of air, objects made of it
would be invisible. The effect of immersing a transparent solid in
a medium of similar optical properties is usually illustrated by dip-
ping a glass rod into Canada balsam or oil of cedar, the immersed
portion being practically invisible. A still better medium can be
made by dissolvmg chloral hydrate in glycerine by the aid of heat.
Only a little glycerine should be taken, as it is necessary to dis-
solve some eight or ten times its volume of the chloral before the
solution acquires the right optical density. A glass rod, if free
from bubbles or striae, becomes absolutely invisible when dipped in
the liquid, and if withdrawn presents a curious appearance, the end
appearing to melt and run freely in drops.

As a matter of fact, transparent objects are only visible by virtue
of non-uniform illumination, as is pointed out by Lord Rayleigh in
his article on optics in the Encyclopedia Britannica. If the illumi-
nation were the same on all sides they would be invisible, even if
immersed in & medium of very different optical index. A condition
approaching uniform illumination might, he says, be attained on
the top of a monument in a dense fog. The author has devised a
very simple method of showing this curious phenomenon, which, in
brief, is to place the object within a hollow globe, the interior sur-
face of which is painted with Balmain’s luminous paint, and view
the interior through a small hole.

The apparatus can be made in a few minutes in the following
manner. A quantity of Canada balsam is boiled down, until a
drop placed on cold glass solidifies. The Balmain paint, in the form
of a dry powder, is stirred into the hot balsam until the whole has
the consistency of thick paint. Two glass evaporating dishes of
equal size are carefully cleaned and warmed, and coated on the
outside with the hot mixture, which can be flowed over the glass,
and by the dexterous manipulation of a small Bunsen flame made
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to cover the entire outer surface. Probably two perfectly plain
hemispherical finger-bowls could be used instead of the evaporating
dishes. As soon as the coating has become hard a small hole is cut
through it through which the interior is to be viewed. If the lips of
the dishes are placed together the interior can be seen through the
small opening, but in this case the line of junction, which is always
more or less dark, comes opposite the aperture, which is a disad-
vantageous arrangement.

If the inner surfaces be exposed to bright daylight, sun or electric
light, and the apparatus taken into a dark room, a crystal ball or
the cut-glass stopper of a decanter placed inside, will be found to be
quite invisible when viewed through the small aperture. A uniform
blue glow fills the interior of the ball, and only the most careful
scrutiny reveals the presence of a solid object within it. Omne or
two of the side facets of the stopper may appear if they happen to
reflect or show by refraction any portion of the line of junction of
the two hemispheres.

The apparatus would give better results if made on a larger
scale, as the eye would not have to be brought so near the object.
Two large wooden bowls would answer the purpose admirably. It
is of the utmost importance to have a very thick and uniform coat-
ing of the paint, as otherwise the illumination is not uniform.



CHAPTER V
DISPERSION

IN our treatment of refraction we have assumed a constant retarda-
tion of the waves for a medium of given refractive index. We have
seen that the velocity of light in the free ether of space is independent
of the color or wave-length. Such, however, is not the case in re-
fracting media, for here the waves not only travel slower than in
free space, but waves of different length travel with very different
velocities. In all such media as air, water, and glass, the long waves
travel faster than the short ones; consequently the deviation of the
ray, or the angle through which the wave-front turns when en-
countering the boundary of the. medium, depends on the color of
the light as well as on the optical density of the medium.

When white light enters a transparent medium, the long red
waves forge ahead of the green ones, which in their turn get ahead
of the blue. If we imagine an instantaneous flash of white light
traversing a refracting medium, we must conceive it as drawn out
into a sort of linear spectrum in the medium, that is, the red waves
lead the train, the orange, yellow, green; blue, and violet following
in succession. The length of this train will increase with the length
of the medium traversed. On emerging again into free ether the
train will move on without any further alteration in its length.

We can form some idea of the actual magnitudes involved in the
following way. Suppose we have a block of perfectly transparent
glass (of ref. index 1.52) twelve miles in thickness. Red light will
traverse it in yydyy Oof & second, and on emerging will be about
1.8 miles in advance of the blue light which entered at the same
time. If white light were to traverse this mass of glass, the time
elapsing between the arrival of the first red and the first blue light
at the eye would be less than sy of a second. Michelson’s
determination of the velocity of light in carbon bisulphide showed
that the red waves gained on the blue waves during their transit
through the tube of liquid. The absence of any change of color
in the variable star Algol furnishes direct evidence that the blue
and red rays traverse space with the same velocity. In this case
the distance is so vast, and the time of transit so long, that the
white light coming from the star during one of its periodic increases
in brilliancy, would arrive at the earth with its red component s0
far in advance of the blue that the fact could be easily established
by the spectro-photometer or even by the eye.

Inasmuch as the deviation of a ray of light depends on the change
of velocity of a wave on going, say, from a rare into a denser medium,
we infer that those rays which are deviated the most, namely the
violet, suffer the greatest change of velocity or move the slowest.

101









104 PHYSICAL OPTICS

While this is apt to be the case, it is not always true, for we find that
there are substances the mean refractive indices of which are small,
while their dispersive powers are large, and vice versa.

Achromatism. — The fact that dispersion is more or less inde-
pendent of refractive index makes it possible to arrange two prisms
of different kinds of glass, with their refracting angles turned in
opposite directions, which shall have the power of deviating a ray
without spreading it out into a spectrum. One of the prisms almost
entirely annuls the dispersion of the other, without entirely annulling
the deviation, a thing which Newton considered impossible. Such
a combination is known as an achromatic prism. Let us see just
how such a system operates.

Flint glass has a much higher dispersive power in proportion to its
mean refractive index than crown glass. The refractive indices of
the two glasses for red, yellow, and bluish-green light of wave-
lengths corresponding to the C, D, and F lines in the solar spectrum
are as follows: ' c > ,

Flintglass . . . . . . . 1630 1.635 1.648
Crownglass . . . . . . . 1527 1530 1.536

If prisms of small angle are employed we can write the deviations
for these colors as proportional to the refractive indices less 1, that
is for flint glass the distance from a point on a screen where the
direct ray falls, to the points where the red-green and blue rays
fall when the prism is put in the path of the light, will be 630,
635, and 648.

The length of the spectrum, or rather the distance between the
C and F lines, is obviously 648 —630 or 18.

For crown glass the distances will be 527, 530, and 536, and the
distance between the C and F lines will be 536—527 or 9. The
dispersion of the flint glass is therefore double that of the crown
glass. If now we make a crown-glass prism of twice the angle of
the flint-glass prism, the distance between the C and F lines will be
the same as with the flint prism, while the distances of the lines
from the spot where the direct ray falls will be twice as great as
before, or 1054, 1060, and 1072.

Suppose now we place the two prisms together with their refract-
ing angles turned in opposite directions. The crown prism alone
would shift the F line to a distance of 1072, but the flint prism
shifts it back a distance of 648, and its resulting position is 1072 —648
or 424 from the spot where the direct ray would fall. The C line
would be deviated by the crown prism to a distance 10564, but the
flint one moves it back 630, and its position is 1054 —630 or 424.
The C and F lines are thus deviated the same amount, and the dis-
persion is annulled so far as these two colors are concerned. The
combination is achromatic for red and greenish-blue light, deviat-
ing both to a distance of 424, a trifle less than the deviation
duced by the flint prism acting alone. Let us now see if the yellow
light falls in the same place. The position of the D line will be
given by 1060—635 or 425, that is, it will be deviated a very little
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indices for crown and flint glass it is easy to see how a combination
of two prisms can give dispersion without deviation, that is, yield
an undeviated spectrum. If, instead of giving the crown prism
an angle double that of the flint, we make it 1.2 times as great, and
make the same calculation as before, we shall find that we have a
spectrum the length of which is 7, and the centre of which falls on
the spot where the undeviated ray would fall. Such a combina~
tion 18 known as a direct vision prism, and is employed in cases
where any considerable deviation would be detrimental, as when
compactness of the instrument is desirable.

Achromatic Lenses. — We are now in a position to consider the
principle on which the achromatic lens is made. Any lens can be
considered as a prism of varying angle, or rather as a solid formed by
the rotation of a thin section of a curved prism around its base.
Since the distance of the focus of a lens from its centre depends on
the deviation of the rays, it follows that the focus will be different
for the different colors, the blue rays which are bent the most
meeting nearest the lens, and the red, which are bent to a less de-
gree, coming together farther away, an effect known as chromatic
aberration. What we require is a combination which will produce
an equal deviation, and consequently a common meeting point for
rays of all colors. If we can arrange two prisms of crown and flint
glass which will give deviation without dispersion, we can in the
same way, by employing a double convex lens of crown and a plane
concave of flint glass, give exactly the same deviation to two colors
widely separated in the spectrum, and very nearly the same devi-
ation to the other colors, with the result that rays of different re-

frangibility come together at very nearly the same point.

Reference to Fig. 96 will make the analogy between the

achromatic lens and prism clear. The blackened parts

indicate how each portion of the lens combination can be

A considered as two opposed prisms. We found that in the

case of the prism the ratio between the angles was 1: 2,

and applying this to the lens it is easy to see that if the

surfaces A, B, and C have the same curvature, the sur-

Fi. 96. face D of the flint lens must be plane, since the angle of

the elementary prismatic portion of the flint lens must

be everywhere } that of the opposed elementary crown prism.

Just as by employing two prisms we could unite two lines of the

spectrum, so by the use of two lenses we can bring rays of any two
different colors to the same focus.

Calculation of Achromatic and Direct Vision Prisms. — For
prisms of small angle the deviation 8=p(n—1), in which p is the
prism angle and n the refractive index. The deviation for two
definite colors (say lines F and C of the solar spectrum) are given by

Op=p(ny— 1),
80=p(n0— l).
SUbtraCtiﬂg, 8’— 8g=p(np—nc). e« s e e e e (1)

The difference 8,— 8. we can designate as the dispersion angle for
the colors in question, and for brevity write it {»,. For a second
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prism of a different angle and composed of a different glass we have
similar equations.

We will take into account three colors corresponding to the lines
F, D, and C, for which we have equations :

Prism 1. 8, =p(np—1), {rc =p(nr—no).
Prism 2. 8'p=p’(n’p— 1), C’po=P’(n'r—n'o).

Suppose now that these two prisms are opposed. We shall then
have the total deviation g of the color D represented by 8,—8&’,, and
the dispersion angle » between the rays F and C by {ee— rc.

00=80"3'D=P(nn“1)“P'(7'l'n—1); N ¢
Wm‘:tra—;'m:l)(nr—nc)—P(n’r—n’c)- . . e (3)

For a direct vision prism in which the ray of color D is undeviated,
we set gp=0, and obtain at once from equation (3) the relation

p_nr—1
p! np—1’

or the angles must stand in inverse ratio to the refractive indices
less 1.

For an achromatic prism which is to deviate the rays of colors F
and C the same amount, we write wgsr=0 and get from our equation
the relation

p _Nr—no

’ [ ]
P Nne ~N¢

We will now investigate the spectrum produced by a direct vision
prism which transmits the ray D without deviation. For this we

have :
go=0=p(np—1) —p'(n’p—1),
or o' =pf2=1)
n’p - 1

Substituting this value of p’ in equation (3) and transposing gives
us for the angular separation of the rays F and C

_ ' !
@pg =p(np _ 1)[12’ Ne 7_1__'1___71_0]
np‘_l n p—l

mp—l _, s called the relative dispersion of a
Np—"n

substance, and it is usually given in the tables which represent the

optical properties of different kinds of glass.

Our equation now becomes

op=p(no — I)B — :—,]

In a similar manner we can derive an expression for the deviation
of the ray D by an achromatic prism which deviates rays F and C

The quantity



108 PHYSICAL OPTICS

by the same amount. In this case
Wpo= O)
g =P(np—' na) (V—' V’).

If in addition to deviating the rays F and C by the same amount,
rays corresponding to the line A and D are to be united, we have

The quantity n,—n¢ is known as the mean dispersion, and
quantities such as n,—n4 or ny,—n, partial dispersions.

Resolving Power of Prisms. — By the resolving power we mean
the ability of the prism to show a line as double when two different
wave-lengths are present. This will obviously depend upon two
things: the narrowness of the images of the lines and their dis-
tance apart. The former depends upon the width of the beam of
light, that is the horizontal aperture of the instrument, for as we
shall see when we come to the Chapter on Diffraction the image of
a very narrow slit broadens by diffraction as the aperture of the
lens is reduced, and it always has a finite width. It is moreover
accompanied by fainter images on each side, with dark minima
between them. Now Lord Rayleigh has shown that if we have
two wave-lengths A; and A, which are very nearly equal, to see the
slit image double, the image due to A; must be separated from that
due to A; by at least the distance of the first minimum bordering
the image formed by A;. This lies in such a direction that the path
difference between the disturbances coming from opposite sides
of the aperture, instead of being zero, the condition at the centre of
the image, differs by exactly one wave-length.

Though the following treatment by Lord Rayleigh will hardly
be understood until after the chapter on Diffraction has been read,
it is introduced at this point for future reference.

“Let AoB, (Fig. 97) be a plane wave-surface of the light before
_ it falls upon the prisms, A B the corresponding wave-surface for a
particular part of the spectrum after the light has passed the prism,
or after it has passed the eye-piece of the observing-telescope. The
path of the ray from the wave-surface AoB, to A or B is determined

by the condition that the optical distance, represented by f pds, is &

minimum ; and as A B is by supposition a wave-surface, this optical
distance is the same for both points. Thus

fpds(forA)=fpds(forB). N )
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‘““We have now to consider the behavior of light belonglng to a
neighboring part of the spectrum. The —
path of a ray from the wave-surface 4,B,

to A is changed; but in virtue of the
minimum property the change may be A
R >

A.

neglected in calculating the optical dis-
tance, as it influences the result by quan-
tities of the second order only in the
change of refrangibility. Accordingly the

optical distance from A,B,to A is represented by f(p+8p)ds, the
integration being along the path A, ... 4 ; and, similarly, the optical
distance between A,B, and B is represented by f(p+8p)ds,

where the integration is along the path B,... B. In virtue of (2)
the difference of the optical distance is

fs,m (along B... B)— [ duds (along do... 4). . . (3)

“ The new wave-surface is formed in such a position that the op-
tical distance is constant; and therefore the dispersion, or the
angle through which the wave-surface is turned by the change in
refrangibility, is found simply by dividing (3) by the distance A B.
If, as in common flint-glass spectroscopes, there is only one dis-

Fi1a. 97.

persing substance, f Suds=~3us, where s is simply the thickness

traversed by the ray. If we call the width of the emergent beam a,
the dispersion is represented by 8u(s;—s:)/a, s and s; being the
thicknesses traversed by the extreme rays. In a properly con-
structed instrument & is negligible, and s, is the aggregate thickness
of the prisms at their thick ends, which we will call £; so that the

dxspers:on (6) is given by

B @)
a

‘““'The condition of resolution of a double line whose components
subtend an angle 6 is that @ must exceed i—;- Hence from (4), in

order that a double line may be resolved whose components have
indices s and p + 8, it is necessary that ¢ should exceed the value
given by the following equation :

A

8,;"""""(5)
which expresses that the relative retardation of the extreme rays
due to the change of refrangibility is the same, namely one wave-
length, as that incurred without a change of refrangibility when we
pass from the principal direction to that corresponding to the first
mnmmum of illumination.

“ That the resolving power of a prismatic spectroscope of given
dispersive material is proportional to the total thickness used, with-
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out regard to the number of angles, or setting of the prisms, is a most
important, perhaps the most important, proposition in connection
with this subject. Hitherto in descriptions of spectroscopes far
too much stress has been laid upon the amount of dispersion pro-
duced by the prisms; but this element by itself tells nothing as to
the power of an instrument. It is well known that by a sufficiently
close approach to a grazing emergence, the dispersion of a prism
of given thickness may be increased without limit; but there is no
corresponding gain in resolving-power. So far as resolving-power
is concerned, it is a matter of indifference whether dispersion be
effected by the prisms or by the telescope.”

The expression for the resolving-power of a prism is usually

A

written in the form Y t& .

This equation states that two lines of wave-lengths A and A +8A
will be just barely separated when the thickness of the prism’s base

which follows at once from (5).

ou
t, multiplied by & X is equal to T

As an example we may calculate the thickness of a prism which
will just separate the sodium lines. We must first get a value

S

for --.
oA
This we can do by differentiating the dispersion formula
B
p=A+= 2
bu_ _2B
A FXh

The value of B varies with the material of the prism. Let

B= .984X107'°, which is for extra dense flint,
A=5.890%X10"° cms.,
A= .006x10~° cms. (difference between D, and D,)

Theref t= A 1022° _ 1.02 cms.

Crelore "ToBam  1.968

The base of the prism must thus be at least a centimeter thick
if the sodium lines are to appear separated.

Lord Rayleigh found as a result of a number of experiments
that from 1.2 to 1.4 cms. were actually required, depending on the
observer.

He also found both from theory and by experiment that a de-
cided improvement in resolving power resulted from stopping the
rays which passed through the centre of the aperture.

Christiansen’s Experiment (Wied. Ann., Nov. 1884). — While
engaged upon some determinations of the refractive indices of white
powders by the method of immersing them in liquid mixtures of
the same refractive index, Christiansen observed some very remark-
able and interesting effects. Owing to the different dispersive pow-
ers of the liquid and powder, complete transparency could only be
obtained for monochromatic light. If white light was employed
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the transmitted light was highly colored, the transmitted color
corresponding to the particular wave-length for which the two
substances happened to have the same refractive index. Finely
powdered glass immersed in a mixture of benzol and bisulphide of
carbon was found to exhibit the colors well. The powder must
be quite free from dirt, the elimination of which is sometimes very
difficult. The author has obtained the best results with the pow-
dered quarts, which can be procured from the large chemical houses.
The powder is boiled in nitro-muriatic acid to free it from impuri-
ties and thoroughly washed in clean water. It is then dried and
placed in a small flask with enough bisulphide of carbon to wet it
thoroughly. Benzol is then added a little at a time until the mix-
ture begins to get transparent. It will be found that red light
is transmitted first, then yellow, green, and blue in succession as
more benzol is added. It is best to stop when the transmitted light
is yellow. In the general illumination of a brightly lighted room
the colors are not very pronounced, and it is best to employ a dis-
tant lamp in a fairly dark room as the source of light. If a per-
manent preparation is desired, the following method gives good
results. A quantity of the quartz powder is introduced into.a 100
c.c. flask (not more than {5 of the velume of the flask), the neck of
which is then drawn down in a blast until it has a diameter of only
a few mms. The liquid previously adjusted in the manner de-
scribed is then introduced in sufficient quantity to fortn a rather
thick pasty mass, which will stick in a thick layer to the walls of
the flask if it is shaken. The flask is then packed in powdered ice
and salt and the neck closed by fusion in the flame. The freezing
mixture is neoeesary on account of the inflammability of the vapor
and its tension, and it is a good plan to wrap a towel around the
beaker contammg the flask and cooling mixture in case of explo-
sion. On removing the flask from the ice it will be found to be quite
opaque, owing to the change in the refractive index of the lx quid.
As the temperature rises red light is transmitted first, and by
slightly warming the flask in spots by momentary contact with &
flame or even with the fingers all colors of the rainbow may be
made to appear simultaneously, the whole appearing like a great
opal. The reason of these beautiful temperature changes will be
readily understood by reference to Fig. 98.

Suppoee A to be a linear source of light which is deviated to the
right and spread out into two spectra by prisms of the same angle,
the one composed of quartz, the other of the iquid mixture. The re-
fractive indices having the same :
value for yellow light, the yel- A A ¢
low of one spectrum will fall im- [
mediately above the yellow of *
the other Since, however, the ,_ 1
liquid has a much higher dlsper- I T
gion it will yield a longer spec- L
trum and the other colors will Fia. 98.
not be in coincidence, or in
other words the refractive indices are different for all the other
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colors. The color transmitted will obviously be the one for which
we have coincidence in the above schematic diagram. The other
colors will be more or less scattered by irregular refractions and re-
flections. Suppose now we heat the mixture, the increase of tem-
perature will cause the liquid to expand and its refractive index to
decrease, while the effect upon the quartz is comparatively slight.
This will mean a shift of the lower spectrum in the diagram towards
the left, the green regions of the two spectra coming into coincidence,
while a further increase of temperature will bring the blue regions
together. The effect of the warming is thus to shift the region of
transmission down the spectrum towards the blue.

In general, unless the thickness of the heterogeneous medium is
considerable, the light which is not directly transmitted emerges to
some extent as diffused light. The color of this diffused light is
complementary to the transmitted, and the green image of a lamp
flame seen through a thin layer of the paste is surrounded by a purple
halo. The colors seen when equal volumes of glycerine and tur-
pentine are shaken together into an emulsion are of similar nature,
though erroneously attributed to interference in some text-books.
The opalescent precipitate obtained by the addition of hydrofluor-
silicic acid to a solution of potassium chloride has been found by the
author to be another case, the color of the transmitted light chang-
ing in & most beautiful manner upon the addition of water, which
diminishes the refractive index of the liquid, precisely as the rise
of temperature did in the case of the benzol mixture. Fuller par-
ticulars regarding these curious mixtures will be found in the origi-
nal papers of Christiansen, and in an interesting paper by Lord
Rayleigh (Phil. Mag., xx. 358, 1885).

Determination of the Dispersion of a Substance in the Form of
a Powder. — If a transparent substance in the form of a powder be
mixed with a liquid of the same refractive index, the whole becomes
optically homogeneous, and the opacity resulting from the irregu-
lar reflection and refraction of the particles disappears. Owing to
the irrationality of dispersion it is not possible to obtain a liquid of
exactly the same refractive index and dispersion, the mixture being
optically homogeneous for a single color only: this color is trans-
mitted as we have seen, while the other colors are scattered, and to
a greater or less extent refused transmission. Suppose we wish to
determine the dispersion of precipitated potassium fluosilicate,
which in the solution of KCl, in which it is formed, shows brilliant
opalescent colors by transmitted light. Introduce the mixture
into a hollow prism and allow it to stand until the precipitate has
settled. Place the prism on the table of a spectrometer, cover the
upper part of the prism with a card to cut off the light which passes
through the clear liquid and examine the transmitted light with a
telescope. It will be found to consist of some definite portion of
the spectrum, which can be considerably narrowed by shielding all
of the prism except the base. Set the cross hair of the eye-piece
on the centre of this band, uncover the upper portion of the prism
and note the wave-length of the Fraunhofer line which comes
nearest to the cross hair. Determine the refractive index of the
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liquid for this line in the usual manner, which will be also the re-
fractive index of the powder for the same color. By adding KCl
or water we can vary the refractive index of the liquid, making it
coincide with that of the powder for the other colors of the spec-
trum, and in this way the dispersion of the powder can be deter-
mined. Compare this with the dispersion of the liquid at such a
density, say, that it is optically the equivalent of the powder for
green light.

Unless the prism has a thickness of about 10 cms. the trans-
mitted color is very impure in the case of the fluosilicate. In cases
such as this more accurate results can be secured by putting the
mixture into a long tube closed by glass plates, and making an in-
dependent observation of the wave-length of the transmitted light.

The potassium fluosilicate has been found by the author to have
the lowest mean refractive index of any known transparent solid,
and a dispersion much less than that of water.

Anomalous Dispersion. — In the case of transparent substances
the dispersion is said to be normal, that is, the refractive index in-
creases as the wave-length decreases though the rate of change
varies according to the nature of the substance.

In the case of substances which show selective absorption this is
not generally the case, the refractive index for the short waves
on the blue side of the absorption band being less than the index
for the red light on the other side of the band.

This phenomenon has been named anomalous dispersion, but, as
we shall see presently, there is nothing anomalous about it, the so-
called normal dispersion being nothing more than a special case of
the anomalous. Fox Talbot appears to have been the first to notice
the peculiar effect, but his discovery was not followed up. In 1860
Le Roux (Ann. de Chimie et de Physique, 3d series, vol. xli., page 285,
1861) discovered that a prism containing iodine vapor deviated the
red rays more than the blue, the indices at a temperature of 700° C.
for the red and violet being 1.0205 and 1.019. Christiansen in
1870 (Pogg. Ann., 1870) detected anomalous dispersion in the case
of an alcoholic solution of fuchsine, which is one of the aniline dyes
having a strong absorption band in the green. Of the remaining
colors, the red, orange, and yellow occur in the same order as in the
case of a glass prism. The violet, however, is less refracted than
the red, and separated from it by a dark interval. Christiansen’s
prism was made of two glass plates inclined at an angle of 1 degree,
the solution being held between them by capillarity. The sub-
ject was next investigated by Kundt, whose papers will be found
in Pogg. Ann., 1871, 1872 His observations showed that the phe-
nomenon is to be observed in the case of all bodies which possess
what is known as surface color, that is, bodies which selectively
reflect certain wave lengths. Ordinary pigments do not belong to
this class, the color being produced by absorption, as we shall see
in a succeeding chapter. Kundt apphed the method of crossed
prisms, due ongmally to Newton, to the investigation of anomalous

ion. If a spectrum is formed by a glass prism with its re-
fracting edge vertical, and this spectrum is further deviated by a
1
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prism formed of an alcoholic solution of some aniline dye with its

refracting edge horizontal, the appearance seen will be similar to

that shown in Fig. 99. Kundt established the law that on ap-

proaching an absorp-

tion band from the red

side the refractive in-

| dex is abnormally in-

» creased by the presence

of the band, while if the

approach is from the

blue side the index is

abnormally decreased.

So great is the difficulty

of seeing the effect with

A the small dispersion ob-

-LAbsarpron tainable by alcobholic

solutions, that the ear-

F1a. 99. lier results of Kundt

were not at first ac-

cepted by some physicists of repute, the effect being attributed to a

want of achromatism of the eye. The demonstration by means of

crossed. prisms, however, removed all doubts regarding the reality
of the phenomenon.

Considerable trouble is usually found in repeating Kundt’s ex-
periment with fluid prisms.

The phenomenon can be studied to much better advantage by
means of prisms formed by squeezing fused cyanine between plates
of glass.! A certain amount of dexterity is required to make good
prisms, which can only be acquired by practice. Small rectangular
pieces of thin German plate glass are prepared (measuring about
2 X 3 em.), and a thin strip cut
from a visiting-card glued along
the short side of one. A piece of
cyanine > about the size of a
coarse shot is placed near the op-
posite side, and the edge of the Yy,
plate heated over a small flame T T
until the dye fuses, holding another e i
coverstrip in the flame at the same Fia. 100.
time, in order to have both at
about the same temperature. The hot edge of the cover is now to
be brought down into the cyanine, and the plate gently lowered
until the edge rests on the strip of card. The plates must be at
once placed under pressure in a small clamp, where they are to
remain until cold. The pressure is to be applied close to the re-
fracting edge of the prism only, as shown in figure. This is very
impqrtaint. Experience is the only guide to the degree of pressure
required.

'Wood, Phil. Mag.. June, 1901.

! Some preparations of cyanine do not fuse. That used for the ('f tion of
prisms was in the form of needle-like crystals, and was prepared by m‘
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It will be found that there is a very narrow strip of clear glass at
the refracting edge, where the glass plates have come into optical
contact. This produces a diffraction-band superposed on the anom-
alous spectrum, but it is so faint that it is not troublesome. One has
only to view a gas flame turned edgewise through the prism, the
anomalous spectrum showing colors in the order orange red, blue,
green, the latter being the least deviated.

It is usually necessary to turn the prism slightly to get the green
part of the spectrum; that is, the incidence should not be normal.

If a prism of this nature is covered with a small diffraction grat-
ing, the lines of which are perpendicular to the edge of the prism, the
oppositely curved branches of the diffraction spectra appear most
beautifully when an arc light is viewed through the combination.
If a grating is not available, the cyanine prism can be mounted over
a small aperture in a card and combined with a glass prism of low
dispersion, or better a water prism, both being mounted on the
table of a spectrometer illuminated with sun or arc light.

Other remarkable cases will be described in the Chapter on the
Theory of Dispersion.

Anomalous Dispersion in its bearing on Solar Phenomena. — In
a communication published in the Proceedings of the Royal Academy
of Sciences, Amsterdam,! W. H. Julius makes the very brilliant sug-
gestion that the ‘ flash spectrum ’’ seen immediately at totality
may be due to photosphere light abnormally refracted in the atmo-
sphere of metallic vapors surrounding the sun: in other words, the
light of the flash spectrum does not come from the reversing layer
at all, but from the photosphere. He shows that the light which
will be thus abnormally refracted will be of wave-lengths almost
identical with the wave-lengths which the metallic vapors are
themselves capable of radiating, that is, it will be light of wave-
lengths nearly identical with those of the absorption bands of the
vapors. This beautiful theory not only explains the apparent
shallowness of the reversing layer, a thing that has always puzzled
astrophysicists, but it accounts for the extraordinary brilliancy
of the lines.

The theory of Julius supposes the sun to be surrounded by an at-
mosphere of metallic vapors, the density and refractive index of which
decrease with increasing distance from the surface. In this atmo-
sphere the rays of light coming from the photosphere will move in
curved paths similar to those of rays in our own atmosphere. The -
reader should refer back to Schtmdt’s theory of the solar disk.

The refractive index is, however, very small except for wave-
lengths very near those which are absorbed by the vapor, conse-
quently the light most strongly refracted, if it could be sorted out
and examined with the spectroscope, would resemble very closely
the light emitted by the vapors. Julius shows that this sorting out
of the more refrangible rays may account for the bright line spec-
trum usually attnbuted to the reversing layer, these rays moving
in curved paths in the solar atmosphere, thus reaching us after the
pbotosphere has been hidden by the moon.

1 See also Astrophysical Journal, xii. 195.
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This phenomenon, namely the production of a bright line spec-
trum by the anomalous refraction of light from a white-hot source,
was reproduced in the laboratory by the author, and independently
by Ebert at about the same time. The conditions supposed by Julius
to exist at the surface of the sun were imitated as closely as possible,
and a spectrum of bright lines was obtained with light from a source
showing a continuous spectrum, by means of anomalous disper-
sion in an incandescent metallic vapor.

For the reproduction of the phenomenon in the laboratory it is
necessary to form an atmosphere of metallic vapor in which the
refractive index changes rapidly from layer to layer. This was
accomplished by allowing the flame of a Bunsen burner fed with
metallic sodium to play against the under side of a white plaster
plate. On looking along the surface of the plate it was seen that a
dark space existed between the flame and the cold surface, resem-
bling somewhat the dark space surrounding the cathode of a Crookes’s
tube. It seemed highly probable that, inasmuch as the temperature
of the flame was lowered by contact with the plate, the density of
the sodium vapor would increase very rapidly from the surface of
the plate downward. The under surface of the plaster plate having
been thus covered with a non-homogeneous layer of sodium vapor, a
spot at the edge of the flame was illuminated with sunlight con-
centrated by a large mirror. This spot radiated white light in
every direction and corresponded to the incandescent photosphere
of the sun (Fig. 101). A telescope provided with an objective

CASTER J2ATE

Fia. 101.

direct vision prism was directed toward the white spot and moved
into such a position that, owing to the reduction in the width of the
source of light by foreshortening, the Fraunhofer lines appeared in
the spectrum. This represented the stage of an eclipse when only
the thin crescent of the sun is visible. The sodium flame appeared
superposed on the spectrum, of course. On moving the spectro-
scope until it was well inside of the plane of the illuminated surface
and feeding the flame with fresh sodium, the solar spectrum van-
ished and there suddenly blazed out two narrow bright yellow lines,
almost exactly in the place of the sodium lines, as is shown in Fig.
102, in which the inverted sodium flame appears on the continuous
spectrum. Cutting off the sunlight with a screen caused the in-
stant disappearance of the bright lines. Repeating the experiment
it was found that the bright lines came into view on the sides of
the sodium lines towards the blue, that is to say, it is light for
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been described. The flash spectrum of potassium has been ob-
tained in a similar manner, consisting of lines in the extreme red,
from one to three in number according to the density of the vapor
and position of the telescope. Fair results have also been obtained
with thallium.
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Fi1a. 103.

Julius applies the anomalous dispersion theory to the prominences
as well as to the reversing layer. This phenomenon can also be
reproduced in the laboratory. Referring to Fig. 103, we see that
its principle is identical with that of the ‘‘ schlieren ”’ apparatus
of Topler, described in the previous chapter. By arranging a sim-
ilar apparatus illuminated with arc light, and setting the screens
so that the field is dark, most interesting results can be obtained
by heating a small capsule containing a bit of metallic sodium in
front of the large lens, and placing a large direct vision prism in
front of the telescope.

Julius has made quite recently (Astrophysical J., Vol. XXV., No.
2), a very comprehensive study of the ways in which the appear-
ance of an absorption band may be modified by dispersion. The
source of light was placed behind a metal tube electrically heated
in which sodium vapor was formed. By means of screens with
apertures of various shapes the appearance of the D lines could
be modified in various ways. Wings could be caused to appear
on either side of the lines, as in 8 and B8’ (Plate 4) or the con-
tinuous spectrum could be caused to disappear entirely, a pair of
bright lines only remaining, as in y and y’. By using a pair of
crossed slits as a screen the curious effects shown in the second
column of photographs were obtained, which have suggested to
Julius that many of the phenomena seen in the spectra of sun-
spots, faculae, prominences, etc., may be the result of anomalous
dispersion.

Julius has recently described (Phys. Zeit., 1910) some experi-
ments intended to illustrate how dark spots on the solar disk can be
produced by refraction. Drops of glycerine suspended in strong
brine in a glass trough appeared dark when the trough was placed
before an illuminated screen, supposed to represent the sun’s disk.
He appears to have overlooked the fact that the glycerine drop
has a “ fish-eye view ”’ of the disk which subtends a solid angle of
96° only, instead of 180°. It seems doubtful if anomalous disper-
sion can explain as many phenomena as Julius supposes.



CHAPTER VI
INTERFERENCE OF LIGHT

TauUs far we have treated single disturbances only, and have not
considered the effect at a point when two or more trains of waves
act on it simyltaneously. We know from observation that two rays
of light will cross each other without in any way interfering with one
another. The feeble rays from a faintly illuminated object will
cross a region traversed by rays of great intensity without being
influenced in any way so far as we can see. In this respect then
light does not interfere with light. When two light-waves strike
the same particle of ether at the same time, its displacement is the
algebraic sum of the displacements that would be produced by the
waves acting separately. This is known as the principle of super-
position. It was stated by Huygens in 1678 as follows. ‘ The
displacement, due to a source of small vibrations, is the same
whether it acts alone or in conjunction with other sources, provided
the displacements are small.” This is the fundamental principle
which underlies the whole subject of interference. When we con-
sider the effect at a point which is simultaneously acted upon by
ehﬂ'm separate waves, we have then merely to sum the separate

ects.

Thus, if either of the two waves acting alone would cause the
ether particle to execute a vibration of unit amplitude, both together
will cause it to vibrate over double the path, if the waves are in the
same phase, that is, if they both reach the point at the same mo-
ment. If they reach the point in opposite phase, that is, half a
wave-length apart, the displacements are equal but in opposite
directions, the resultant displacement being zero, or in other words
the particle does not move.

We must note carefully, however, that the interference is only
at this point. The waves have not destroyed each other, for each
runs along beyond the point in question precisely the same as if it
had not encountered the other. Indeed this must be so, for waves
represent energy, and energy cannot be destroyed.

Interference then does not destroy any of the energy, and we
shall see later on that whenever we produce a decrease in the illu-
mination at any point by means of interference, we shall produce a
corresponding increase at some other point, or the total 1llum1na—
tion remains the same. That this is strictly true we shall prove
presently.

The intensity of the illumination obviously depends on the am-
plitude of the wbratlon, but the relation between them is not at
once obvious. We say in general that two candles produce double
the illumination that one candle does, that three candles produce

119
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triple the illumination, etc. What is it that we have doubled at
the point by lighting the second candle? At first sight it might
appear as if we had doubled the amplitude, but we shall show
presently that this is not the case. One thing, however, we can
be pretty sure of, namely, that we have doubled the amount of
energy at the pomt Now the energy in wave-motion exists partly
as kinetic and partly as potential, that is, we have displaced par-
ticles at rest but possessmg potential energy in virtue of their dlS-
placement from their position of equilibrium, and particles moving
across the line of equilibrium which possess kinetic energy only.
Other particles on the wave possess both potential and kinetic
energy, a.nd it can be shown that the total energy of the wave is
equally divided between potential and kinetic. Let ‘us now deter-
‘mine the relation existing between the energy and the amplitude.
Average Kinetic Energy of a Vibrating Particle. — The displace-
ment of a particle at any time £ is given by the equation

y=asin (of—a).

Its velocity at any moment then will be v = gty = quw c08 (of — ) and

its kinetic energy 31 mu?, where m represents the mass of the
particle.
The velocity varies from 0 to aw, as is clear from the above formula,

and the mean energy during a complete vibration of periodic time
Tis
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which can be taken as the measure of the intensity, if we define
intensity as the energy in unit volume of the vibrating medium. It
can be proved that the total energy is evenly divided between
kinetic and potential, and since we have only considered the kinetic
encrgy in the above treatment the total energy will be double the
amount calculated. We can also define intensity as the quantity
of energy transmitted in unit time across unit cross section of a plane
perpendicular to the direction in which the energy is travelling. In
this case the velocity of propagation enters as a factor and we must

multiply the quantity calculated above by v= —T—,, which gives us
mmr’a’A

T

The important thing to notice is that the intensity varies directly

as the square of the amplitude, and inversely as the square of the
periodic time. The first is of importance in the study of interfer-

The average energy is therefore
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ence, the second in considering the laws of radiation which will
form the subject of a subsequent chapter.

If we are dealing with two sources of light which emit mono-
chromatic radiations of the same periodic time or wave-length,
their intensities are in the ratio of the squares of their amplitudes or

I @

II 0’2

In comparing the intensities when the periodic times are different,
we cannot use the eye, for it is impossible to judge accurately of the
equality between two different colors. Moreover the eye cannot
directly determine the true intensity, for, as we know, the true
intensity or energy of the extreme red end of the spectrum is far
greater than that of the yellow, while the eye is more strongly im-
pressed by the latter. In comparing the intensities of two sources
which do not emit similar radiations, we must resort to some meas-
uring instrument which reduces them to energy of the same type,
for example the thermopile or bolometer, which measures their heat-
ing power. Since the intensity of radiation varies as the inverse
square of the distance from the source, as can be proved by the
most elementary methods, it follows that the amplitude varies
inversely as the distance.

Composition of Vibrations. — If we have a pomt moving in a
circular orbit with a uniform velocity, the projection of this point
on any diameter of the circle moves with harmonic motion, just as
does a particle vibrating under the influence of a force directly
proportlonal to its distance from its position of equilibrium. The
point moving in a circle has an acceleration V?/r (directed towards
the centre), where V =the orbital velocity, and r=the radius of
the circle. This acceleration can be resolved into two components
parallel and at right angles to the given diameter AA’. The one
parallel to the diameter is V?/r Xz/r, where x is the distance of P,
the projection of the point on the diameter, from the centre of the
circle (Fig. 104).

‘The acceleration of P is then g.:c, directed
always towards the centre, and proportional to
its distance from the centre. This acceleration
is similar to that which the particles of an elastic
body receive when moved out of their position
of ethbrmm, and we assume the ether particles
acted on by a force of a kindred nature. The
velocity with which the point P moves on the . Fq. 104.
diameter is v=V sin ¢, where ¢ represents the

phase.

Suppose now we require the effect on a point of two harmonic
motions of equal periods and different amplitudes and phases. We
can represent their motions by constructing two concentric circles
with radii proportional to the amplitudes (Fig. 105).

The two harmonic motions will be represented by the projections
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on a diameter of two points G and G’, which move around these
circles with equal angular velocity. P will then represent the po-
sition of the particle at a given time as due to the motion repre-
sented by G alone, while P’ will represent its position at the same
time as due to the motion represented by G’ alone. If both these
motions are impressed simultaneously, the position of the particle
will be represented by R, so situated that RC=PC+ P'C (by
the principle of superposition). The
phase difference between the two vibra-
tions is the angle GCG’, which of course
remains constant. 1f we complete the
parallelogram GCG'S, R will represent the
projection of S on the diameter, and as
the parallelogram turns with G and G, the
motion of R, the projection of S, will
represent the resultant motion. The di-
agonal of the parallelogram is evidently
the amplitude of the resultant vibration,
and its square measures the intensity.
Now the square of the diameter of a paral-
Fia. 105. lelogram is by Geometry equal to the
sum of the squares on two adjacent sides,
plus twice the product of the sides into the cosine of the included
angle. Consequently if a and a’ are the amplitudes of the com-
ponent vibrations, and e the phase difference between them, the
resultant intensity will be

I=a*+a’?+2aa’ cos e.

Suppose now that we have two waves of equal length and ampli-
tude, arriving at a point in the same phase. In the above formula
a will equal a’,and cos e will equal one, therefore the resultant in-
tensity will be 4 a2, or quadruple the illumination produced by one
wave alone. If the two waves reach the point a quarter of a wave-
length apart the phase difference will be 90°, and the illumination
2a?, or twice that due to a single wave. If the phase difference is
180°, then cose= —1 and the illumination becomes zero.

Distribution of Illumination. — If we have two similar sources
of light, which are vibrating in unison, the value of ¢ in the expres-
sion which we have just deduced will vary from point to point. Let
us consider the distribution of illumination along a line, perpen-
dicular to the direction in which the two sources lie. In this case
we will consider that a=a’ since the sources are similar, and we will
consider the sources as lying on each side of the axis of ordinates.
Taking distances along the other line as abscissae, and representing
the illuminations as ordinates, we have the illumination due to one
source represented by a straight line parallel to the axis of abscissac,
the ordinate of which is a®. With both sources acting together the
amplitude will vary from point to point; en the axis of ordinates,
where the disturbances arrive in the same phase, we have the
amplitude 2 a and the intensity 4a2. We can express our abscissae
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in terms of the phase difference. If this is 90°, or the waves arrive
a quarter of a wave-length apart, cose=0 and the 1llum1natlon is
2 a3, or double that due

to one source acting '
alone. For e=180, cos ..
e=—1 and the illumi- .-
nation is zero. Inter-
mediate points can be
determined by assign-
ing different values to :o
e, a curvesimilar to that
shown in Fig. 106 being .

the result.

If now there be no e
loss of energy the total ° % L3 % 3%
illumination must re- F1a. 106.

main the same ; we can .
represent this by the area comprised between the curved line and

the axis of abscissae. The total intensity due to the two sources
acting without interference, which would be the case if they did
not vibrate in unison, would be 2a%. This is true of course only
when we consider the average illumination for a time which is long
in comparison to the time between certain assumed abrupt changes
in the phases of the vibrating sources.

If no energy is lost the area between a line parallel to the axis of
abscissae of ordinate 2 a?, and the two ordinates erected at e=0 and
fn_;n 360 should be equal to the area of the curve within the same

its.
_ The total illumination along a distance Az on the axis of abscissae
18
I 1= 2a’Azx y

if we assume no interference.
With interference taking place the total illumination is

I,= .+(§.a’+2 a® cos e)dz, in which z is the value for which e=0.

Since ¢ is a linear function of z we can write e= KAz, in which
K is a constant, and if Az represents the distance from e=0 to
e =360

Integrating we have
Li=2a'az [ 24 cos Kads,

KAx=2m~.

I,=2aAz + %[sin K(z +Azx) —sin Kz],

Ig= 02A$=Il

It must be clearly understood at the outset that to have perma-
nent interference, the phase relation between the two sources must
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remain constant, or they must be similar; their periodic times of
vibration must be the same, and any changes of phase which occur
in one must occur also in the other. The only way in which this
condition can be attained experimentally is by making one source
the image of the other, or by dividing the bundle of rays which
issue from a single source into two portions, either by reflection or
refraction, and then reuniting them.

Resultant of a Large Number of Disturbances of Arbitrary
Phase. — We have seen that when two waves in the same phase act
on a point, double the amplitude, and consequently four times the
illumination, results. The question now perhaps occurs, why do
not two candles produce twice the amplitude of one candle, and
consequently four times the illumination? The answer to this
will be readily seen if we consider carefully the manner in which any
given point is illuminated by a candle. In the flame of a candle
there are countless radiating particles, in all possible phases of vi-
bration. The illumination is due to the joint action of them all,
and to determine it we must find the resultant of a large number of
vibrations of arbitrary phase. In other words, if we have a great
number of particles, each one of which alone would give an amph-
tude 1 and unit illumination at a given point, what will be the am-
plitude produced by all of them acting together? If there are n
particles, and it so happened that all of them were vibrating in such
a manner as to send vibrations in similar phase to the point, the
resultant amplitude would be n and the illumination n2. Another
candle with n particles vibrating in the same manner and in
unison with the first, acting with the first, would give us an ampli-
tude 2n and an illumination (27)? or 4 n?, that is four {imes the
illumination of a single candle. It is obviously impossible, however,
for all the particles to send their waves to the point in the same
phase, for they are all vibrating independently of each other, and
they are, moreover, at different distances from the illuminated
point. The amplitude produced cannot then be equal to n. Lord
Rayleigh has shown that the average illumination (not amplitude)
due to a large number of disturbances of arbitrary phase is simply
n times the illumination due to a single one of the disturbances.
This was done by the theory of probabilities, and the reader is re-
ferred to the original paper for the method, or the earlier edition of
this book.

Interference of Light. — Grimaldi, who was the first to observe
accurately and describe diffraction, or the bending of light around the
edges of obstacles, described as early as 1665 an experiment which
he believed proved that darkness could be produced by the addition
of light to light. He admitted sunlight into a darkened room
through two neighboring pin-holes, and received the light on a white
screen. Each pin-hole casts on the screen a circular image of the gun
surrounded by a feebly illuminated ring. By placing the scréen
at such a distance from the pin-holes that the outer rings overlapped,
the outer edge of the ring formed by one of the holes being tangent
to the outer edge of the sun’s image formed by the other, he ob-
served that the edge of the ring was less brilliant in the overlapping
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portion than at other places. We shall see presently that inter-
ference could not have occurred under these conditions, for two
sources of light, in order to produce permanent destructive inter-
ference at a given point, must be similar — that is, must be vibrat-
ing in unison with similar amplitude and period — and two pin-holes
illuminated by sunlight would not
fulfil these conditions unless they
were less than 0.05 mm. apart, as
will be proved lateron. @~ -~ .

A century later this experiment .=..__ ..l _T>-o_

-

-
- -
-~

was modified by Young, and true --.__-°2°°. |-----733
destructive interference of light -~ ..----72==7|--7.~ -
observed. Young passed the sun- .-~ g
light through a pin-hole, and then -~
received the diverging cone upon
two other pin-holes (Fig. 107). F1a. 107.
From each one of these a divergent
cone of light spread out, and where these two cones of light over-
lapped on a screen, he observed dark and light bands. In this ex-
periment, the two pm—holes lie on the wave-front of the disturbances
coming from the first hole, consequently they are always in the
same phase. The dark bands are the loci of points situated at dis-
tances from the two pm—holes, differing by an odd number of half-
waves. The fringes in this experiment, being produced by diffracted
light, did not prove that two streams of ordmary light could destroy
one another at a point. Diffracted light was not well understood
at the time; some modification was supposed to have taken place,
and the fringes might be due in some way to this modification.
Fresnel realised the importance of producing two streams of
light, capable of interfering and containing no diffracted light.
streams must come from two similar sources, and not pass the
edges of any obstacles. This was accomplished by Fresnel by re-
flecting the rays from a point
source of light from two mir-
rors Inclined very slightly
towards one another. Two
virtual images of the point
were thus formed behind the
mirrors, separated by a very
small distance, depending on
the angle between the mir-
rors. Two mirrors of sil-

vered or black glass, reccive

-— Py light from a point source at S
e (Fig. 108).

The light reflected from

¥ the two mirrors comes then

from two virtual images S’
and S”’, which lie very close
w if the angle between the mirrors is small. We thus have

WE™~aays coming from the two similar sources, S’ and S”, and within the
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region where they overlap interference takes place. The light,
instead of being uniformly distributed, is collected, as it were, into
bright lines with dark spaces between them. The dark bands are
the places where the waves from the two sources arrive half a wave-
length apart and destroy each other : at the bright bands the waves
arrive together, and we have reénforcement. It is evident that as
the angle between the mirrors increases, the two virtual sources
S’ and S”’ approach, coalescing when the angle equals 180.
Let us now examine the form and position of the fringes
Inasmuch as we can consider the virtual sources S’ and S’ as if
they were real points of light, we will sup-
8 pose the mirrors removed, and consider the
illumination on a screen placed at a dis-
tance “ a ”’ from the sources. Let AB be
a section of the screen (Fig. 109). At P,
which is on a line perpendicular to the line
joining the sources at its middle point, we
shall have a maximum illumination, since
A P is equidistant from the sources, and the
F16. 109. waves starting together reach it in similar
phase and reénforce. Going away from P
we shall find a point M half a wave-length nearer S; than S;, and
here the waves will arrive half a wave-length apart, and destroy
one another. If we advance a little further along the line AB we
shall reach a point where the path difference is a whole wave-length,
and we sha.ll have another maximum. Let us determine the dis-
tance of any bright or dark band from P in terms of the distance a,
the distance S between the sources and the wave-length of light.
Around M as a centre with a radius MS;, describe an arc cutting
MS, at C. Since S,S; is small in comparison to a, this arc is ap-
proximately a straight line perpendicular to the line MO (O being
the point midway between the two sources).
S:8: is perpendicular to OP, and therefore the angle S,8;C=-
angle MOP.
If the angles are equal, so also are their circular measures, or

%[71)—) = ,5"813 , or calling x the distance of the dark band from the
1003
centre of the fringe system, and s the distance between the sources,

we have
z _A/2
a s

The general expression then for the position of any bright or dark

band will be z=2 8—n§, odd values of n corresponding to dark bands,
even values to light.

It is clear from the diagram that the point P will be a maximum
for light of any color or wave-length. If the source of light is white
this central band will also be white. The positions of other maxima
being a function of the wave-length, it follows that the spacing

b Y
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between the bands will be different for the different colors, conse-
quently there will be an overlapping, and instead of white fringes
with dark spaces between we shall have colored fringes, the da.rk
minima being absent except in the immediate vicinity of the central
white band.

We will now take up a more complete investigation of the dis-
tribution of the maxima and minima in space. The locus of all
points equidistant from two points is a plane perpendicular to the
middle point of a line joining the points. The first maximum is
then a plane lying between the two sources. The second maximum
is the locus of all points in space so situated that the differences
between their distances from the sources is one wave-length. Points
fulfilling this condition lie on a hyperboloid of revolution, the
sources being the foci, for by definition an hyperboloid is a surface
generated by the movement of a point in such a way, that the
difference between its distances from two fixed points is a constant.
The locus of the second maximum will be another hyperboloid with
a constant difference of 2. The loci of the maxima and minima in
space form a system of confocal hyperboloids, and the fringes
formed on a screen intercepting them will be hyperbolae.

In the case of our interference experiments the luminous points
are so near together, and the screen so far removed, that its inter-
sections with the hyperboloids are approximately straight lines.

Very satisfactory Fresnel mirrors can be made of modern mirror
glass, or even of thin plate glass, unsilvered. Silvered glass is prefer-
able owing to its greater reflecting power. The varnish can be dis-
solved from the silvered surface with alcohol, and the metal film
polished. If glass of this description cannot be procured, a piece of
thin plate glass can be chemically silvered. Two pieces measuring
about 2 cms. along each edge are laid side by side on a second piece
of plate glass, the outer edge of one being raised slightly by means
of a narrow strip of thin paper. The edges of the plates should be
in contact and both should be pressed against the supporting plate.
They are then fastened in this position with a little sealing wax.
‘The angle between the plates should be such as to make the reflected
images of an illuminated slit (situated at a distance of 40 or 50
cms.) appear about 3 mms. apart. A suitable slit can be made by
ruling a line on a piece of the mirror glass with the point of a knife.
It should be backed with a bright sodium flame and the mirrors
mounted about 30 cms. from it. The dividing line between the
mirrors should be adjusted accurately parallel to the reflected images,
which lie on either side of it, and the ficld examined at a distance of
20 or 30 cms. from the mirrors with an cye-piece or pocket magnify-
ing-giass. The eye-piece should be held at the point at which both
of the reflected images are seen. If the fringes do not appear at
once they can usually be brought into view by readjusting the mir-
ror for parallelism with the slit, the field being watched with the
eye-piece. The distance of the nth fringe from the centre of the

system is given by
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a and b being the distances of the slit and the plane in which the
fringes are seen from the mirrors, and » the very acute exterior
angle between the mirrors. If we measure this angle, which we
can do with a spectrometer, and the distance between the fringes,
we can determine roughly the wave-length of the sodium light.

The Flow of Energy in a System of Interference Fringes.— The
interference minima formed by two similar sources of light
form a system of confocal hyperboloids, and the question of the
flow of energy in this case, or any similar case, does not appear to
have been discussed. Energy is obviously flowing out from both
sources at its normal rate, but the direction of flow is perhaps not
quite obvious. Suppose the minima equal to zero, which is nearly
correct at the centre of the system. Energy evidently cannot cross
a plane along which there is no disturbance.

In stationary waves, if the nodes are absolutely at rest, which is
the case if the two wave-trains are of equal amplitude, we cannot
speak of a flow of energy across them. A node may be considered
as having the properties of a perfect reflector, that is to say the
point acquires the power of reflecting as a result of the arrival of a
wave travelling in the opposite direction. We are thus forced to
the conclusion that the flow of energy in the case of the interference
fringes must be along the hyperboloids, that is along curved paths.
We can show this experimentally by means of ripples in mercury
excited by two needles mounted on the prong of a tuning-fork. If
we view the mercury surface through a narrow slit opened and
closed by the vibrations of another fork slightly out of tune with
the first, we see the waves (stroboscopically) creeping slowly along
the surface, and following the lines of the hyperboloids. Two ques-
tions now naturally occur to us. How does the energy get into the
bright fringes, if the dark fringes are supposed to act as barriers?
and what is the nature of the wave that is travelling along a bright
fringe? In regard to the first question: the dark fringes are never
absolutely black, as no one of them is equidistant from both sources.
The amplitudes are therefore slightly different, and there will be a
flow of energy in the direction of the disturbance having the larger
amplitude. Though it may be very slight at any given point, it is
ample to account for the flow along the hyperboloid. We can take
as an analogous case two parallel sheets of cloth tightly stretched,
and very close together. Consider water forcing its way into the
space between the two sheets from both sides. A very small flow
across unit cross section will give us a large flow across unit section
taken perpendicular to the sheets.

We may, however, have a fringe which is absolutely black, for
there is nothing to prevent us from considering the sources as vi-
brating with a difference of phase of 180°. This makes the centre
of the system dark, and equal to zero, and it must act as a barrier
to the flow of energy from both sources. In other words, the cen-
tral fringe can be considered as acting as a perfect mirror, and we
can regard the fringes as formed by the interference of these re-
flected waves with the direct. If the flow of energy is along the
hyperboloids, it is evident that in the region between the sources
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In the region between the sources we must regard the same thing
as going on, the only difference being that here the incidence is
more nearly normal. The waves are stationary on the line joining
the sources, but as soon as we get off this line we must regard the
stationary waves as oozing out in all directions, the velocity of the
oozing inoreasing with the distance from the line.

The language which I have used here is not very exact, but it is
not easy td visualize what is going on, and still harder to put it
into words.

Lloyd’s Single Mirror. — Even simpler than the Fresnel mirrors
is the device employed by Dr. Lloyd. Here the light streams from
the source and its reflected image are made to interfere. The ex-
periment is easily repeated with a strip of plate glass thirty or forty
centimetres long and three or four wide, mounted in a clamp-stand
with its surface vertical. The illuminated slit is placed a little be-
yond the further end, and one or two millimetres in front of the
plane of the surface. If the eye is now brought up to the opposite
end, the slit and its reflected image are both seen, and the fringes
are easily found at this point with an eye-piece. Dr. Lloyd found
that the centre of the system did not lie on the plane of the surface,
as might be expected, but was displaced by the width of half a fringe.
This is due to the phase change which the light experiences on reflec-
tion. As the mirror is turned slowly about a vertical axis, the dis-
tance between the fringes changes. With the images close together
they are broad and very easily seen; with the images farther apart
they are very fine, and only seen with difficulty. This piece of
apparatus is the easiest of all to work with, it being almost impos-
sible to miss finding the fringes at the first attempt.

Fresnel’s Bi-Prism. — In this experiment the beam of light is
divided by refraction by
means of a prism of very
obtuse angle, as shown in
Fig. 111.

The rays, originally em-
anating from a source at s,
after refraction have di-
rections as if they came
from the two sources s’

Fro. 111. and s”’. The illuminated
slit should be parallel to
the edge joining the two opposed prisms. _

The wave-length of the light can be approximately determined
with the bi-prism. T ———

If a is the distance of the source from the prism, b is the distance
of the plane in which the fringes are observed, and ¢ the distance
between s and s, we have, if we call 8 the angle of deviation pro-
duced by each half of the prism,

c=2asind=2a(p—1)e,

in which u is the refractive index of the glass and ¢ the prism angle.
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The distance of the nth fringe from the cent